Numerical study of a non-standard finite-difference scheme for the van der Pol equation

被引:22
|
作者
Mickens, RE [1 ]
Gumel, AB
机构
[1] Clark Atlanta Univ, Dept Phys, Atlanta, GA 30314 USA
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
关键词
D O I
10.1006/jsvi.2001.3783
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:955 / 963
页数:9
相关论文
共 50 条
  • [31] Design and stability analysis of an implicit non-standard finite difference scheme for fractional neutron point kinetic equation
    Roul, Pradip
    Goura, V. M. K. Prasad
    Madduri, Harshita
    Obaidurrahman, K.
    APPLIED NUMERICAL MATHEMATICS, 2019, 145 : 201 - 226
  • [32] A linearized finite-difference scheme for the numerical solution of the nonlinear cubic Schrodinger equation
    Bratsos, A.G.
    Korean Journal of Computational and Applied Mathematics, 2001, 8 (03): : 459 - 467
  • [33] Non-standard finite difference scheme and analysis of smoking model with reversion class
    Zeb, Anwar
    Alzahrani, Abdullah
    RESULTS IN PHYSICS, 2021, 21
  • [34] The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics
    Moaddy, K.
    Momani, S.
    Hashim, I.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) : 1209 - 1216
  • [35] Stability and numerical analysis via non-standard finite difference scheme of a nonlinear classical and fractional order model
    Alrabaiah, Hussam
    Din, Rahim Ud
    Ansari, Khursheed J.
    Irshad, Ateeq ur Rehman
    Ozdemir, Burhanettin
    RESULTS IN PHYSICS, 2023, 49
  • [36] Numerical solution to the van der Pol equation with fractional damping
    Konuralp, Ali
    Konuralp, Cigdem
    Yildirim, Ahmet
    PHYSICA SCRIPTA, 2009, T136
  • [37] Hybrid finite-difference scheme for solving the dispersion equation
    Tsai, TL
    Yang, JC
    Huang, LH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 2002, 128 (01): : 78 - 86
  • [38] THE CONVERGENCE OF A FINITE-DIFFERENCE SCHEME FOR A NONLINEAR EVOLUTION EQUATION
    TIKHOMIROVA, EI
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (03): : 33 - 39
  • [39] A FINITE-DIFFERENCE SCHEME FOR THE HEAT-CONDUCTION EQUATION
    LIVNE, E
    GLASNER, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 58 (01) : 59 - 66
  • [40] A Non-Standard Finite Difference Scheme of a Multiple Infected Compartments Model for Waterborne Disease
    Zhang, Lijun
    Gao, Shujing
    Zou, Qin
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (01) : 59 - 73