Discrete Miranda-Talenti estimates and applications to linear and nonlinear PDEs

被引:20
|
作者
Neilan, Michael [1 ]
Wu, Mohan [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
Non-divergence form; Miranda-Talenti; Hamilton-Jacobi-Bellman; Finite element methods; Convergence analysis; ELLIPTIC-EQUATIONS; NUMERICAL-ANALYSIS; GALERKIN METHODS; FORM;
D O I
10.1016/j.cam.2019.01.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we construct simple and convergent finite element methods for linear and nonlinear elliptic differential equations in non-divergence form with discontinuous coefficients. The methods are motivated by discrete Miranda-Talenti estimates, which relate the H-2 semi-norm of piecewise polynomials with the L-2 norm of its Laplacian on convex domains. We develop a stability and convergence theory of the proposed methods, and back up the theory with numerical experiments. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 376
页数:19
相关论文
共 50 条