Discrete Miranda-Talenti estimates and applications to linear and nonlinear PDEs

被引:20
|
作者
Neilan, Michael [1 ]
Wu, Mohan [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
Non-divergence form; Miranda-Talenti; Hamilton-Jacobi-Bellman; Finite element methods; Convergence analysis; ELLIPTIC-EQUATIONS; NUMERICAL-ANALYSIS; GALERKIN METHODS; FORM;
D O I
10.1016/j.cam.2019.01.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we construct simple and convergent finite element methods for linear and nonlinear elliptic differential equations in non-divergence form with discontinuous coefficients. The methods are motivated by discrete Miranda-Talenti estimates, which relate the H-2 semi-norm of piecewise polynomials with the L-2 norm of its Laplacian on convex domains. We develop a stability and convergence theory of the proposed methods, and back up the theory with numerical experiments. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 376
页数:19
相关论文
共 50 条
  • [1] Continuous finite elements satisfying a strong discrete Miranda-Talenti identity
    Gallistl, Dietmar
    Tian, Shudan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [2] DECAY ESTIMATES OF VISCOSITY SOLUTIONS OF NONLINEAR PARABOLIC PDES AND APPLICATIONS
    Marchi, Silvana
    MATEMATICHE, 2014, 69 (01): : 109 - 123
  • [3] On linear and nonlinear fractional PDEs
    Ahmad, Jamshad
    ul Hassany, Qazi Mahmood
    Mohyud-Din, Syed Tauseef
    THEORETICAL AND APPLIED MECHANICS, 2013, 40 (04) : 511 - 524
  • [4] UNIFORM DISCRETE SOBOLEV ESTIMATES OF SOLUTIONS TO FINITE DIFFERENCE SCHEMES FOR SINGULAR LIMITS OF NONLINEAR PDES
    Mandel, Liat Even-Dar
    Schochet, Steven
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 727 - 757
  • [5] Geometric estimates for doubly nonlinear parabolic PDEs
    Bezerra Junior, Elzon C.
    da Silva, Joao Vitor
    Ricarte, Gleydson C.
    NONLINEARITY, 2022, 35 (05) : 2334 - 2362
  • [6] Reduction of Nonlinear PDEs to Linear Equations
    Carlo Sbordone
    Milan Journal of Mathematics, 2003, 71 (1) : 19 - 32
  • [7] From Linear to Integrable Nonlinear PDEs
    UNIFIED APPROACH TO BOUNDARY VALUE PROBLEMS, 2008, 78 : 217 - 223
  • [8] NONLINEAR PDES AND RECURSIVE FLOWS - APPLICATIONS
    FUCHSSTEINER, B
    LOSCHIAVO, M
    APPLIED MATHEMATICS LETTERS, 1993, 6 (01) : 101 - 104
  • [9] Invertible Mappings of Nonlinear PDEs to Linear PDEs through Admitted Conservation Laws
    Stephen Anco
    George Bluman
    Thomas Wolf
    Acta Applicandae Mathematicae, 2008, 101 : 21 - 38
  • [10] Invertible mappings of nonlinear PDEs to linear PDEs through admitted conservation laws
    Anco, Stephen
    Bluman, George
    Wolf, Thomas
    ACTA APPLICANDAE MATHEMATICAE, 2008, 101 (1-3) : 21 - 38