CoType: Joint Extraction of Typed Entities and Relations with Knowledge Bases

被引:198
|
作者
Ren, Xiang [1 ]
Wu, Zeqiu [1 ]
He, Wenqi [1 ]
Qu, Meng [1 ]
Voss, Clare R. [2 ]
Ji, Heng [3 ]
Abdelzaher, Tarek F. [1 ]
Han, Jiawei [1 ]
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Army Res Lab, Computat & Informat Sci Directorate, Adelphi, MD USA
[3] Rensselaer Polytech Inst, Comp Sci Dept, Troy, NY USA
来源
PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17) | 2017年
基金
美国国家科学基金会;
关键词
D O I
10.1145/3038912.3052708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Extracting entities and relations for types of interest from text is important for understanding massive text corpora. Traditionally, systems of entity relation extraction have relied on human-annotated corpora for training and adopted an incremental pipeline. Such systems require additional human expertise to be ported to a new domain, and are vulnerable to errors cascading down the pipeline. In this paper, we investigate joint extraction of typed entities and relations with labeled data heuristically obtained from knowledge bases (i.e., distant supervision). As our algorithm for type labeling via distant supervision is context-agnostic, noisy training data poses unique challenges for the task. We propose a novel domain-independent framework, called COTYPE, that runs a data-driven text segmentation algorithm to extract entity mentions, and jointly embeds entity mentions, relation mentions, text features and type labels into two low-dimensional spaces (for entity and relation mentions respectively), where, in each space, objects whose types are close will also have similar representations. COTYPE, then using these learned embeddings, estimates the types of test (unlinkable) mentions. We formulate a joint optimization problem to learn embeddings from text corpora and knowledge bases, adopting a novel partial-label loss function for noisy labeled data and introducing an object "translation" function to capture the cross-constraints of entities and relations on each other. Experiments on three public datasets demonstrate the effectiveness of COTYPE across different domains (e.g., news, biomedical), with an average of 25% improvement in F1 score compared to the next best method.
引用
收藏
页码:1015 / 1024
页数:10
相关论文
共 50 条
  • [11] Joint Extraction of Entities and Relations Based on Deep Learning: A Survey
    Zhang Y.-S.
    Liu S.-K.
    Liu Y.
    Ren L.
    Xin Y.-H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (04): : 1093 - 1116
  • [12] An Alleviate Exposure Bias Method in Joint Extraction of Entities and Relations
    Wang, Zhen
    Fan, Hongjie
    Liu, Junfei
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (09): : 1980 - 1992
  • [13] Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy
    Yu, Bowen
    Zhang, Zhenyu
    Shu, Xiaobo
    Liu, Tingwen
    Wang, Yubin
    Wang, Bin
    Li, Sujian
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 2282 - 2289
  • [14] Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme
    Zheng, Suncong
    Wang, Feng
    Bao, Hongyun
    Hao, Yuexing
    Zhou, Peng
    Xu, Bo
    PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, : 1227 - 1236
  • [15] Joint Drug Entities and Relations Extraction Based on Neural Networks
    Cao M.
    Yang Z.
    Luo L.
    Lin H.
    Wang J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (07): : 1432 - 1440
  • [16] Joint Extraction of Entities and Relations Based on Hierarchical Sequence Labeling
    Tian J.
    Lü X.
    You X.
    Xiao G.
    Han J.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57 (01): : 53 - 60
  • [17] Embedding of Hierarchically Typed Knowledge Bases
    Zhang, Richong
    Kong, Fanshuang
    Wang, Chenyue
    Mao, Yongyi
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2046 - 2053
  • [18] Joint Extraction of Entities and Relations Based on Enhanced Span and Gate Mechanism
    Zhang, Nan
    Xin, Junfang
    Cai, Qiang
    Chung, Vera
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [19] CyberEntRel: Joint extraction of cyber entities and relations using deep learning
    Ahmed, Kashan
    Khurshid, Syed Khaldoon
    Hina, Sadaf
    COMPUTERS & SECURITY, 2024, 136
  • [20] A distributed joint extraction framework for sedimentological entities and relations with federated learning
    Wang, Tianheng
    Zheng, Ling
    Lv, Hairong
    Zhou, Chenghu
    Shen, Yunheng
    Qiu, Qinjun
    Li, Yan
    Li, Pufan
    Wang, Guorui
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213