Unsupervised log message anomaly detection

被引:50
|
作者
Farzad, Amir [1 ]
Gulliver, T. Aaron [1 ]
机构
[1] Univ Victoria, Dept Elect & Comp Engn, STN CSC, POB 1700, Victoria, BC V8W 2Y2, Canada
来源
ICT EXPRESS | 2020年 / 6卷 / 03期
关键词
Anomaly detection; Classification; Deep learning; Log messages; Unsupervised learning;
D O I
10.1016/j.icte.2020.06.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Log messages are now broadly used in cloud and software systems. They are important for classification and anomaly detection as millions of logs are generated each day. In this paper, an unsupervised model for log message anomaly detection is proposed which employs Isolation Forest and two deep Autoencoder networks. The Autoencoder networks are used for training and feature extraction, and then for anomaly detection, while Isolation Forest is used for positive sample prediction. The proposed model is evaluated using the BGL, Openstack and Thunderbird log message data sets. The results obtained show that the number of negative samples predicted to be positive is low, especially with Isolation Forest and one Autoencoder. Further, the results are better than with other well-known models. (C) 2020 The Korean Institute of Communications and Information Sciences (KICS). Publishing services by Elsevier B.V.
引用
收藏
页码:229 / 237
页数:9
相关论文
共 50 条
  • [31] Unsupervised Anomaly Detection in Knowledge Graphs
    Senaratne, Asara
    Omran, Pouya Ghiasnezhad
    Williams, Graham
    Christen, Peter
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS (IJCKG 2021), 2021, : 161 - 165
  • [32] Special Issue on Unsupervised Anomaly Detection
    Goldstein, Markus
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (10):
  • [33] A robust unsupervised anomaly detection framework
    Luo, Zhengyu
    He, Kejing
    Yu, Zhixing
    [J]. APPLIED INTELLIGENCE, 2022, 52 (06) : 6022 - 6036
  • [34] Quantum algorithm for unsupervised anomaly detection
    Guo, Mingchao
    Pan, Shijie
    Li, Wenmin
    Gao, Fei
    Qin, Sujuan
    Yu, XiaoLing
    Zhang, Xuanwen
    Wen, Qiaoyan
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 625
  • [35] Improved autoencoder for unsupervised anomaly detection
    Cheng, Zhen
    Wang, Siwei
    Zhang, Pei
    Wang, Siqi
    Liu, Xinwang
    Zhu, En
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (12) : 7103 - 7125
  • [36] On Algorithms Selection for Unsupervised Anomaly Detection
    Zoppi, Tommaso
    Ceccarelli, Andrea
    Bondavalli, Andrea
    [J]. 2018 IEEE 23RD PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC), 2018, : 279 - 288
  • [37] Learning Unsupervised Metaformer for Anomaly Detection
    Wu, Jhih-Ciang
    Chen, Ding-Jie
    Fuh, Chiou-Shann
    Liu, Tyng-Luh
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4349 - 4358
  • [38] A New Distributed Log Anomaly Detection Method based on Message Middleware and ATT-GRU br
    Fang, Wei
    Jia, Xuelei
    Zhang, Wen
    Sheng, Victor S.
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2023, 17 (02): : 486 - 503
  • [39] Leveraging Log Instructions in Log-based Anomaly Detection
    Bogatinovski, Jasmin
    Madjarov, Gjorgji
    Nedelkoski, Sasho
    Cardoso, Jorge
    Kao, Odej
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (IEEE SCC 2022), 2022, : 321 - 326
  • [40] Log-based Anomaly Detection Without Log Parsing
    Van-Hoang Le
    Zhang, Hongyu
    [J]. 2021 36TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING ASE 2021, 2021, : 492 - 504