3D InISAR Imaging By Using Multi-temporal Data

被引:0
|
作者
Giusti, Elisa [1 ]
Salvetti, Federica [2 ]
Stagliano, Daniele [2 ]
Martorella, Marco [2 ]
机构
[1] CNIT RaSS, Pisa, Italy
[2] Univ Pisa, CNIT RaSS, I-56100 Pisa, Italy
关键词
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
InISAR imaging has proven to be an effective tool to produce 3D target reconstruction. This paper presents results of such a technique applied to real data. A multi-temporal approach is considered to further improve the target 3D reconstruction. Such an approach consists of aligning 3D InISAR reconstructions from a single InISAR system relatively to different time intervals.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 50 条
  • [41] Dimension reduction of multi-temporal elevation data
    Miliaresis, George
    [J]. APPLIED GEOMATICS, 2019, 11 (04) : 371 - 379
  • [42] Dimension reduction of multi-temporal elevation data
    George Miliaresis
    [J]. Applied Geomatics, 2019, 11 : 371 - 379
  • [43] STUBBLE BURNING DETECTION USING MULTI-SENSOR AND MULTI-TEMPORAL SATELLITE DATA
    Garg, Aseem
    Vescovi, Fabio Domenico
    Chhipa, Vaibhav
    Kumar, Ajay
    Prasad, Shubham
    Aravind, S.
    Guthula, Venkanna Babu
    Pankajakshan, Praveen
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1606 - 1609
  • [44] Generating of 3D data during neurovascular interventions by using multi-projection imaging
    Noël, PB
    Hoffmann, KR
    Walczak, AM
    Schaefer, S
    Hanel, RA
    Wehman, JC
    Levy, E
    Guterman, LR
    Hopkins, N
    [J]. CARS 2005: Computer Assisted Radiology and Surgery, 2005, 1281 : 334 - 338
  • [45] Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop
    Agueera Vega, Francisco
    Carvajal Ramirez, Fernando
    Perez Saiz, Monica
    Orgaz Rosua, Francisco
    [J]. BIOSYSTEMS ENGINEERING, 2015, 132 : 19 - 27
  • [46] Crop yield prediction from multi-spectral, multi-temporal remotely sensed imagery using recurrent 3D convolutional neural networks*
    Qiao, Mengjia
    He, Xiaohui
    Cheng, Xijie
    Li, Panle
    Luo, Haotian
    Zhang, Lehan
    Tian, Zhihui
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [47] Mapping tropical rainforest canopies using multi-temporal spaceborne imaging spectroscopy
    Somers, Ben
    Asner, Gregory P.
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XV, 2013, 8887
  • [48] 3D imaging of elemental distributions using multi-angle RBS 2D-data
    Oishi, Y
    Hotta, K
    Ishii, K
    Komori, Y
    Matsuyama, S
    Yamazaki, H
    Amartivan, T
    Rodriguez, M
    Katoh, K
    Izukawa, D
    Mizuma, K
    Satoh, T
    Kamiya, T
    Sakai, T
    Arakawa, K
    Saidoh, M
    Oikawa, M
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 210 : 117 - 122
  • [49] Development and Evaluation of a Two-Staged 3D Keypoint BasedWorkflow for the Co-Registration of Unstructured Multi-Temporal and Multi-Modal 3D Point Clouds
    Isfort, Steffen
    Elias, Melanie
    Maas, Hans-Gerd
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 113 - 120
  • [50] DETECTION OF 3D LAND DISPLACEMENT AFTER THE GREAT EAST JAPAN EARTHQUAKE IN 2011 FROM MULTI-TEMPORAL SAR IMAGES AND GPS DATA
    Susaki, Junichi
    Ito, Hiroki
    Anahara, Takuma
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2050 - 2053