Parameter clustering in Bayesian functional principal component analysis of neuroscientific data

被引:6
|
作者
Margaritella, Nicolo [1 ]
Inacio, Vanda [1 ]
King, Ruth [1 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kin Bldg, Edinburgh, Midlothian, Scotland
关键词
Bayesian hierarchical models; clustering; Dirichlet process; functional data analysis; neuroscience; spatiotemporal data; MIXTURE MODEL; INFERENCE; REMOVAL; EEG;
D O I
10.1002/sim.8768
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The extraordinary advancements in neuroscientific technology for brain recordings over the last decades have led to increasingly complex spatiotemporal data sets. To reduce oversimplifications, new models have been developed to be able to identify meaningful patterns and new insights within a highly demanding data environment. To this extent, we propose a new model called parameter clustering functional principal component analysis (PCl-fPCA) that merges ideas from functional data analysis and Bayesian nonparametrics to obtain a flexible and computationally feasible signal reconstruction and exploration of spatiotemporal neuroscientific data. In particular, we use a Dirichlet process Gaussian mixture model to cluster functional principal component scores within the standard Bayesian functional PCA framework. This approach captures the spatial dependence structure among smoothed time series (curves) and its interaction with the time domain without imposing a prior spatial structure on the data. Moreover, by moving the mixture from data to functional principal component scores, we obtain a more general clustering procedure, thus allowing a higher level of intricate insight and understanding of the data. We present results from a simulation study showing improvements in curve and correlation reconstruction compared with different Bayesian and frequentist fPCA models and we apply our method to functional magnetic resonance imaging and electroencephalogram data analyses providing a rich exploration of the spatiotemporal dependence in brain time series.
引用
收藏
页码:167 / 184
页数:18
相关论文
共 50 条
  • [1] Distance-based Clustering of Functional Data with Derivative Principal Component Analysis
    Yu, Ping
    Shi, Gongming
    Wang, Chunjie
    Song, Xinyuan
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [2] A random version of principal component analysis in data clustering
    Palese, Luigi Leonardo
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2018, 73 : 57 - 64
  • [3] Principal component analysis for clustering gene expression data
    Yeung, KY
    Ruzzo, WL
    [J]. BIOINFORMATICS, 2001, 17 (09) : 763 - 774
  • [4] Principal component analysis for clustering temporomandibular joint data
    Meng Shuaishuai
    Fu Yuzhuo
    Liu Ting
    Li Yi
    [J]. 2015 8TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1, 2015, : 422 - 425
  • [5] Robust principal component analysis for functional data
    Peña, D
    Prieto, J
    [J]. TEST, 1999, 8 (01) : 56 - 60
  • [6] Functional principal component analysis of fMRI data
    Viviani, R
    Grön, G
    Spitzer, M
    [J]. HUMAN BRAIN MAPPING, 2005, 24 (02) : 109 - 129
  • [7] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    [J]. Test, 1999, 8 (1) : 1 - 73
  • [8] Principal component analysis for Hilbertian functional data
    Kim, Dongwoo
    Lee, Young Kyung
    Park, Byeong U.
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (01) : 149 - 161
  • [9] On Bayesian principal component analysis
    Smidl, Vaclav
    Quinn, Anthony
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4101 - 4123
  • [10] Bayesian principal component analysis
    Nounou, MN
    Bakshi, BR
    Goel, PK
    Shen, XT
    [J]. JOURNAL OF CHEMOMETRICS, 2002, 16 (11) : 576 - 595