Integer-valued polynomials on algebras

被引:25
|
作者
Frisch, Sophie [1 ]
机构
[1] Graz Univ Technol, Inst Math A, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Integer-valued polynomials; Spectrum; Krull dimension; Matrix algebras; Polynomial rings; I-adic topology; Non-commutative algebras; Non-commuting variables; Polynomial functions; Polynomial mappings; INTERPOLATION; RINGS;
D O I
10.1016/j.jalgebra.2012.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I-adic continuity of integer-valued polynomials on A. For Noetherian one-dimensional D, we determine spectrum and Krull dimension of the ring IntD(A) of integer-valued polynomials on A. We do the same for the ring of polynomials with coefficients in M-n(K), the K-algebra of n x n matrices, that map every matrix in M-n(D) to a matrix in M-n(D). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:414 / 425
页数:12
相关论文
共 50 条