Study of the instability of the Poiseuille flow using a thermodynamic formalism

被引:12
|
作者
Wang, Jianchun [1 ]
Li, Qianxiao [1 ]
E, Weinan [1 ,2 ,3 ,4 ]
机构
[1] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
[4] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
中国国家自然科学基金;
关键词
Poiseuille flow; subcritical transition; phase transition; statistical mechanics; free energy; TURBULENCE TRANSITION; PLANE CHANNEL; STATES; BIFURCATIONS;
D O I
10.1073/pnas.1501288112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The stability of the plane Poiseuille flow is analyzed using a thermodynamic formalism by considering the deterministic NavierStokes equation with Gaussian random initial data. A unique critical Reynolds number, Re-c approximate to 2,332, at which the probability of observing puffs in the solution changes from 0 to 1, is numerically demonstrated to exist in the thermodynamic limit and is found to be independent of the noise amplitude. Using the puff density as the macrostate variable, the free energy of such a system is computed and analyzed. The puff density approaches zero as the critical Reynolds number is approached from above, signaling a continuous transition despite the fact that the bifurcation is subcritical for a finite-sized system. An action function is found for the probability of observing puffs in a small subregion of the flow, and this action function depends only on the Reynolds number. The strategy used here should be applicable to a wide range of other problems exhibiting subcritical instabilities.
引用
收藏
页码:9518 / 9523
页数:6
相关论文
共 50 条
  • [21] Instability of vertically stratified horizontal plane Poiseuille flow
    Le Gal, P.
    Harlander, U.
    Borcia, I. D.
    Le Dizes, S.
    Chen, J.
    Favier, B.
    JOURNAL OF FLUID MECHANICS, 2021, 907
  • [22] Instability of Poiseuille flow in a fluid overlying a porous layer
    Chang, Min-Hsing
    Chen, Falin
    Straughan, Brian
    JOURNAL OF FLUID MECHANICS, 2006, 564 : 287 - 303
  • [23] STEADY POISEUILLE FLOW IN NEMATICS - THEORY OF UNIFORM INSTABILITY
    MANNEVILLE, P
    DUBOISVIOLETTE, E
    JOURNAL DE PHYSIQUE, 1976, 37 (10): : 1115 - 1124
  • [24] Instability of Plane Poiseuille Flow in Viscous Compressible Gas
    Yoshiyuki Kagei
    Takaaki Nishida
    Journal of Mathematical Fluid Mechanics, 2015, 17 : 129 - 143
  • [25] Shear banding and interfacial instability in planar Poiseuille flow
    Fielding, Suzanne M.
    Wilson, Helen J.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2010, 165 (5-6) : 196 - 202
  • [26] ON THE INSTABILITY OF PLANE POISEUILLE FLOW OF TWO IMMISCIBLE FLUIDS USING THE ENERGY GRADIENT THEORY
    Farahbakhsh, I.
    Nourazar, S. S.
    Ghassemi, H.
    Dou, H. -S.
    Nazari-Golshan, A.
    JOURNAL OF MECHANICS, 2014, 30 (03) : 299 - 305
  • [27] Instability in Poiseuille flow in a porous medium with slip boundary conditions
    B. Straughan
    A. J. Harfash
    Microfluidics and Nanofluidics, 2013, 15 : 109 - 115
  • [28] Subcritical transition in plane Poiseuille flow as a linear instability process
    Roizner, Federico
    Karp, Michael
    Cohen, Jacob
    PHYSICS OF FLUIDS, 2016, 28 (05)
  • [29] Orientational instability in a nematic liquid crystal in a decaying Poiseuille flow
    S. V. Pasechnik
    A. P. Krekhov
    D. V. Shmeleva
    I. Sh. Nasibullaev
    V. A. Tsvetkov
    Journal of Experimental and Theoretical Physics, 2005, 100 : 804 - 810
  • [30] The centre-mode instability of viscoelastic plane Poiseuille flow
    Khalid, Mohammad
    Chaudhary, Indresh
    Garg, Piyush
    Shankar, V.
    Subramanian, Ganesh
    JOURNAL OF FLUID MECHANICS, 2021, 915