Multi-label incremental learning applied to web page categorization

被引:11
|
作者
Ciarelli, Patrick Marques [1 ]
Oliveira, Elias [2 ]
Salles, Evandro O. T. [1 ]
机构
[1] Univ Fed Espirito Santo, Dept Engn Eletr, Vitoria, Spain
[2] Univ Fed Espirito Santo, Dept Ciencia Informacao, Vitoria, Spain
来源
NEURAL COMPUTING & APPLICATIONS | 2014年 / 24卷 / 06期
关键词
Multi-label text categorization; Incremental learning; Web page categorization; Probabilistic Neural Network; Expectation Maximization; MAXIMUM-LIKELIHOOD; ALGORITHMS; KNN;
D O I
10.1007/s00521-013-1345-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label problems are challenging because each instance may be associated with an unknown number of categories, and the relationship among the categories is not always known. A large amount of data is necessary to infer the required information regarding the categories, but these data are normally available only in small batches and distributed over a period of time. In this work, multi-label problems are tackled using an incremental neural network known as the evolving Probabilistic Neural Network (ePNN). This neural network is capable of continuous learning while maintaining a reduced architecture, so that it can always receive training data when available with no drastic growth of its structure. We carried out a series of experiments on web page data sets and compared the performance of ePNN to that of other multi-label categorizers. On average, ePNN outperformed the other categorizers in four out of five metrics used for evaluation, and the structure of ePNN was less complex than that of the other algorithms evaluated.
引用
收藏
页码:1403 / 1419
页数:17
相关论文
共 50 条
  • [31] Integration of knowledge in a specific domain for multi-label categorization
    Martin Valdivia, Maria Teresa
    Montejo Raez, Arturo
    Diaz Galiano, Manuel Carlos
    Urena Lopez, L. Alfonso
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2007, (39): : 63 - 70
  • [32] Compact Multi-Label Learning
    Shen, Xiaobo
    Liu, Weiwei
    Tsang, Ivor W.
    Sun, Quan-Sen
    Ong, Yew-Soon
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4066 - 4073
  • [33] Multi-label Ensemble Learning
    Shi, Chuan
    Kong, Xiangnan
    Yu, Philip S.
    Wang, Bai
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 223 - 239
  • [34] Privileged Multi-label Learning
    You, Shan
    Xu, Chang
    Wang, Yunhe
    Xu, Chao
    Tao, Dacheng
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3336 - 3342
  • [35] Copula Multi-label Learning
    Liu, Weiwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [36] On the consistency of multi-label learning
    Gao, Wei
    Zhou, Zhi-Hua
    ARTIFICIAL INTELLIGENCE, 2013, 199 : 22 - 44
  • [37] Multi-Label Manifold Learning
    Hou, Peng
    Geng, Xin
    Zhang, Min-Ling
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1680 - 1686
  • [38] Multi-label Crowdsourcing Learning
    Li S.-Y.
    Jiang Y.
    Ruan Jian Xue Bao/Journal of Software, 2020, 31 (05): : 1497 - 1510
  • [39] Fast Multi-label Learning
    Gong, Xiuwen
    Yuan, Dong
    Bao, Wei
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2432 - 2438
  • [40] Partial Multi-Label Learning
    Xie, Ming-Kun
    Huang, Sheng-Jun
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4302 - 4309