A framework for short-term traffic flow forecasting using the combination of wavelet transformation and artificial neural networks

被引:31
|
作者
Kashi, Seyed Omid Mousavizadeh [1 ]
Akbarzadeh, Meisam [1 ]
机构
[1] Isfahan Univ Technol, Dept Transportat Engn, Esfahan 8415683111, Iran
关键词
Artificial neural network; forecasting; traffic flow; wavelet transformation; TIME-SERIES; MODEL; PREDICTION; SYSTEM;
D O I
10.1080/15472450.2018.1493929
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The main objective of this paper is to develop a framework for short-term traffic flow forecasting models with high accuracy. Due to flow oscillations, the real-time information presented to the drivers through variable message signs, etc., may not be valid by the time the driver reaches the location. On the other hand, not all compartments of the flow signal are of same importance in determining its future state. A model is developed to predict the value of traffic flow in near future (next 5-35minutes) based on the combination of wavelet transformation and artificial neural networks. This model is called the hybrid WT-ANN. Wavelet transformation is set to denoise the flow signal, i.e., filtering the unimportant fluctuations of the flow signal. Unimportant fluctuations are those that have little or no effect on the future condition of the signal. The neural network is set and trained to use previous data for predicting future flow. To implement the system, traffic data of US-101 were used from Next Generation Simulation (NGSIM). Results show that removing the noises has improved the accuracy of the prediction to a great extent. The model was used to predict the flow in three different locations on the same highway and a different highway in a different country. The model rendered highly reliable predictions. The proposed model predicts the flow of next 5min on the same location with 2.5% Mean Absolute Percentage Error (MAPE) and of next 35min with less than 12% MAPE. It predicts the flow on downstream locations for next 5min with less than 8% MAPE and for the different highway with 2.3% MAPE.
引用
收藏
页码:60 / 71
页数:12
相关论文
共 50 条
  • [21] Medium and short-term electric load forecasting using artificial neural networks
    Varga, L
    Tihanyi, Z
    NEURAL NETWORKS - PRODUCING DEPENDABLE SYSTEMS, CONFERENCE PROCEEDINGS, 1996, 95 (973): : 135 - 146
  • [22] Short-term electric load forecasting in Tunisia using artificial neural networks
    Houimli, Rim
    Zmami, Mourad
    Ben-Salha, Ousama
    ENERGY SYSTEMS-OPTIMIZATION MODELING SIMULATION AND ECONOMIC ASPECTS, 2020, 11 (02): : 357 - 375
  • [23] Forecasting Short-Term Corn Price Changes: Using Artificial Neural Networks
    Jin, Zhi
    Li, Fengjun
    INTERNATIONAL JOINT CONFERENCE ON APPLIED MATHEMATICS, STATISTICS AND PUBLIC ADMINISTRATION (AMSPA 2014), 2014, : 271 - 276
  • [24] Electricity Price and Load Short-Term Forecasting Using Artificial Neural Networks
    Mandal, Paras
    Senjyu, Tomonobu
    Urasaki, Naomitsu
    Funabashi, Toshihisa
    INTERNATIONAL JOURNAL OF EMERGING ELECTRIC POWER SYSTEMS, 2006, 7 (04): : 1 - 20
  • [25] Short-Term Forecasting of Electricity Consumption Using Artificial Neural Networks - an Overview
    Baric, Ivan
    Grbic, Ratko
    Nyarko, Emmanuel Karlo
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1076 - 1081
  • [26] Short-term electric load forecasting in Tunisia using artificial neural networks
    Rim Houimli
    Mourad Zmami
    Ousama Ben-Salha
    Energy Systems, 2020, 11 : 357 - 375
  • [27] Global model for short-term load forecasting using artificial neural networks
    Marín, FJ
    García-Lagos, F
    Joya, G
    Sandoval, F
    IEE PROCEEDINGS-GENERATION TRANSMISSION AND DISTRIBUTION, 2002, 149 (02) : 121 - 125
  • [28] Short-Term Forecasting in Electric Power Systems using Artificial Neural Networks
    Roussineau, Eduardo Esteban
    Otto, Philip
    Gratzfeld, Peter
    2018 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2018,
  • [29] Cascaded artificial neural networks for short-term load forecasting
    AlFuhaid, AS
    ElSayed, MA
    Mahmoud, MS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (04) : 1524 - 1529
  • [30] The Short-Term Traffic Volume Forecasting for Urban Interchange Based on RBF Artificial Neural Networks
    Zang, Xiaodong
    2009 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-7, CONFERENCE PROCEEDINGS, 2009, : 2607 - 2611