Mineral Carbonation of CO2

被引:453
|
作者
Oelkers, Eric H. [1 ]
Gislason, Sigurdur R. [2 ]
Matter, Juerg [3 ]
机构
[1] Univ Toulouse, LMTG, CNRS, IRD OMP, F-31400 Toulouse, France
[2] Univ Iceland, Inst Earth Sci, IS-101 Reykjavik, Iceland
[3] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
关键词
CO2; sequestration; mineral carbonation; mineralogic storage; basalt carbonation;
D O I
10.2113/gselements.4.5.333
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A survey of the global carbon reservoirs suggests that the most stable, long-term storage mechanism for atmospheric CO, is the formation of carbonate minerals such as calcite, dolomite and magnesite. The feasibility Is demonstrated by the proportion of terrestrial carbon bound in these minerals: at least 40,000 times moire carbon Is present In carbonate rocks than In the atmosphere. Atmospheric carbon can be transformed Into carbonate minerals either ex situ, as part of an Industrial process, or In situ, by Injection Onto geological formations where the elements required for carbonate-mineral formation are present. Many challenges In mineral carbonation remain to be resolved. They Include overcoming the slow kinetics of mineral-fluid reactions, dealing with the large volume of source material required and reducing the energy needed to hasten the carbonation process. To address these challenges, several pilot studies have been launched, Including the CarbFix program in Iceland. The aim of CarbFix Is to inject CO, Into permeable basaltic rocks in an attempt to form carbonate minerals directly through a coupled dissolution-precipitation process.
引用
收藏
页码:333 / 337
页数:5
相关论文
共 50 条
  • [41] CO2 storage in solid form:: A study of direct mineral carbonation
    O'Connor, WK
    Dahlin, DC
    Nilsen, DN
    Rush, GE
    Walters, RP
    Turner, PC
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES, 2001, : 322 - 327
  • [42] Experimental Study on Mineral Dissolution and Carbonation Efficiency Applied to pH-Swing Mineral Carbonation for Improved CO2 Sequestration
    Galina, Natalia R.
    Arce, Gretta L. A. F.
    Maroto-Valer, Mercedes
    avila, Ivonete
    [J]. ENERGIES, 2023, 16 (05)
  • [43] Carbonation and CO2 confinement
    Carlos Abanades, Juan
    Alvarez, Diego
    [J]. BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2006, (03): : 2 - 5
  • [44] Kinetics Analysis of CO2 Mineral Carbonation Using Byproduct Red Gypsum
    Rahmani, Omeid
    Kadkhodaie, Ali
    Highfield, James
    [J]. ENERGY & FUELS, 2016, 30 (09) : 7460 - 7464
  • [45] Bauxite residue neutralization with simultaneous mineral carbonation using atmospheric CO2
    Han, Young-Soo
    Ji, Sangwoo
    Lee, Pyeong-Koo
    Oh, Chamteut
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2017, 326 : 87 - 93
  • [46] Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature
    Revathy, T. D. Rushendra
    Palanivelu, K.
    Ramachandran, A.
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2016, 23 (08) : 7349 - 7359
  • [47] Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature
    T. D. Rushendra Revathy
    K. Palanivelu
    A. Ramachandran
    [J]. Environmental Science and Pollution Research, 2016, 23 : 7349 - 7359
  • [48] The technology of CO2 sequestration by mineral carbonation: current status and future prospects
    Wang, F.
    Dreisinger, D. B.
    Jarvis, M.
    Hitchins, T.
    [J]. CANADIAN METALLURGICAL QUARTERLY, 2018, 57 (01) : 46 - 58
  • [49] Sequestering CO2 by Mineral Carbonation: Stability against Acid Rain Exposure
    Allen, Daniel J.
    Brent, Geoff F.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (07) : 2735 - 2739
  • [50] Integration of CO2 Capture and Mineral Carbonation by Using Recyclable Ammonium Salts
    Wang, Xiaolong
    Maroto-Valer, M. Mercedes
    [J]. CHEMSUSCHEM, 2011, 4 (09) : 1291 - 1300