Structural basis of redox-dependent modulation of galectin-1 dynamics and function

被引:48
|
作者
Guardia, Carlos M. [1 ]
Caramelo, Julio J. [2 ,3 ]
Trujillo, Madia [4 ,5 ]
Mendez-Huergo, Santiago P. [6 ]
Radi, Rafael [4 ,5 ]
Estrin, Dario A. [1 ]
Rabinovich, Gabriel A. [2 ,6 ]
机构
[1] Univ Buenos Aires, Dept Inorgan Analyt & Chem Phys INQUIMAE CONICET, RA-1053 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Sch Exact & Nat Sci, Dept Biol Chem, RA-1053 Buenos Aires, DF, Argentina
[3] Fdn Inst Leloir, Lab Struct & Cellular Biol, Buenos Aires, DF, Argentina
[4] Univ Republica, Fac Med, Dept Bioquim, UY-11800 Montevideo, Uruguay
[5] Univ Republica, Fac Med, Ctr Free Rad & Biomed Res, UY-11800 Montevideo, Uruguay
[6] Inst Biol & Expt Med IBYME CONICET, Lab Immunopathol, Buenos Aires, DF, Argentina
基金
美国国家卫生研究院;
关键词
circular dichroism; cysteine; galectin-1; molecular dynamics; oxidation; GALACTOSIDE-BINDING LECTIN; SITE-DIRECTED MUTAGENESIS; SULFENIC ACID FORMATION; MOLECULAR-DYNAMICS; HYDROGEN-PEROXIDE; LIGAND-BINDING; AMINO-ACID; CARBOHYDRATE-RECOGNITION; OXIDATIVE INACTIVATION; OXIDIZED GALECTIN-1;
D O I
10.1093/glycob/cwu008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Galectin-1 (Gal-1), a member of a family of multifunctional lectins, plays key roles in diverse biological processes including cell signaling, immunomodulation, neuroprotection and angiogenesis. The presence of an unusual number of six cysteine residues within Gal-1 sequence prompted a detailed analysis of the impact of the redox environment on the functional activity of this lectin. We examined the role of each cysteine residue in the structure and function of Gal-1 using both experimental and computational approaches. Our results show that: (i) only three cysteine residues present in each carbohydrate recognition domain (CRD) (Cys2, Cys16 and Cys88) were important in protein oxidation, (ii) oxidation promoted the formation of the Cys16Cys88 disulfide bond, as well as multimers through Cys2, (iii) the oxidized protein did not bind to lactose, probably due to poor interactions with Arg48 and Glu71, (iv) in vitro oxidation by air was completely reversible and (v) oxidation by hydrogen peroxide was relatively slow (1.7 +/- 0.2 M-1 s(-1) at pH 7.4 and 25(circle)C). Finally, an analysis of key cysteines in other human galectins is also provided in order to predict their behaviour in response to redox variations. Collectively, our data provide new insights into the structural basis of Gal-1 redox regulation with critical implications in physiology and pathology.
引用
收藏
页码:428 / 441
页数:14
相关论文
共 50 条
  • [31] Galectin-1–Related Modulation of Trophoblast Endothelial Interactions by Integrins α1 and β1
    Bei Xu
    Renuka Shanmugalingam
    Katrina Chau
    Angela Makris
    Annemarie Hennessy
    Reproductive Sciences, 2020, 27 : 1097 - 1109
  • [32] Redox-Dependent Modulation of Human Liver Progenitor Cell Line Fate
    Bellanti, Francesco
    Mangieri, Domenica
    di Bello, Giorgia
    Lo Buglio, Aurelio
    Pannone, Giuseppe
    Pedicillo, Maria Carmela
    Fersini, Alberto
    Dobrakowski, Michal
    Kasperczyk, Aleksandra
    Kasperczyk, Slawomir
    Vendemiale, Gianluigi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (03)
  • [33] Redox-Dependent Copper Ion Modulation of Amyloid-β (1-42) Aggregation In Vitro
    Sasanian, Nima
    Bernson, David
    Horvath, Istvan
    Wittung-Stafshede, Pernilla
    Esbjorner, Elin K.
    BIOMOLECULES, 2020, 10 (06) : 1 - 19
  • [34] Galectin-1 is critical for the structural integrity of mast cells.
    Mazucato, V. M.
    Rosa, J. C.
    dasilva, L. L.
    Jamur, M.
    Oliver, C.
    MOLECULAR BIOLOGY OF THE CELL, 2014, 25
  • [35] Structural aspects of binding of α-linked digalactosides to human galectin-1
    Miller, Michelle C.
    Ribeiro, Joao P.
    Roldos, Virginia
    Martin-Santamaria, Sonsoles
    Javier Canada, F.
    Nesmelova, Irina A.
    Andre, Sabine
    Pang, Mabel
    Klyosov, Anatole A.
    Baum, Linda G.
    Jimenez-Barbero, Jesus
    Gabius, Hans-Joachim
    Mayo, Kevin H.
    GLYCOBIOLOGY, 2011, 21 (12) : 1627 - 1641
  • [36] DISTRIBUTION AND FUNCTION OF GALECTIN-1 AND GALECTIN-3 IN ADULT RAT DRG NEURONS
    Sango, K.
    Yanagisawa, H.
    Takaku, S.
    Horie, H.
    Kadoya, T.
    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, 2009, 14 : 132 - 132
  • [37] Regulation of osteoclast differentiation by the redox-dependent modulation of nuclear import of transcription factors
    Y-J Huh
    J-M Kim
    H Kim
    H Song
    H So
    S Y Lee
    S B Kwon
    H J Kim
    H-H Kim
    S H Lee
    Y Choi
    S-C Chung
    D-w Jeong
    B-M Min
    Cell Death & Differentiation, 2006, 13 : 1138 - 1146
  • [38] Induction of T lymphocyte apoptosis: A novel function for galectin-1
    Pace, KE
    Baum, LG
    TRENDS IN GLYCOSCIENCE AND GLYCOTECHNOLOGY, 1997, 9 (45) : 21 - 29
  • [39] Expression and function of galectin-1 in adult neural stem cells
    M. Sakaguchi
    Y. Imaizumi
    H. Okano
    Cellular and Molecular Life Sciences, 2007, 64
  • [40] Expression and function of galectin-1 in adult neural stem cells
    Sakaguchi, M.
    Imaizumi, Y.
    Okano, H.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2007, 64 (10) : 1254 - 1258