Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices

被引:166
|
作者
Bai, Zhong-Zhi [1 ]
Golub, Gene H.
Li, Chi-Kwong
机构
[1] Fudan Univ, Dept Math, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, State Key Lab Sci Engn Comp, Inst Comp Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Stanford Univ, Dept Comp Sci, Sci Comp & Computat Math Program, Stanford, CA 94305 USA
[4] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2006年 / 28卷 / 02期
关键词
non-Hermitian matrix; Hermitian matrix; skew-Hermitian matrix; splitting iteration method; optimal iteration parameter;
D O I
10.1137/050623644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The optimal parameter of the Hermitian/skew-Hermitian splitting (HSS) iteration method for a real two-by-two linear system is obtained. The result is used to determine the optimal parameters for linear systems associated with certain two-by-two block matrices and to estimate the optimal parameters of the HSS iteration method for linear systems with n-by-n real coefficient matrices. Numerical examples are given to illustrate the results.
引用
收藏
页码:583 / 603
页数:21
相关论文
共 50 条
  • [31] On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations
    Bai, Zhong-Zhi
    Golub, Gene H.
    Ng, Michael K.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (04) : 319 - 335
  • [32] On m-step Hermitian and skew-Hermitian splitting preconditioning methods
    Huang, Yu-Mei
    JOURNAL OF ENGINEERING MATHEMATICS, 2015, 93 (01) : 77 - 86
  • [33] ON HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR CONTINUOUS SYLVESTER EQUATIONS
    Bai, Zhong-Zhi
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2011, 29 (02) : 185 - 198
  • [34] The Convergence for Splitting Iteration Methods for Two-by-Two Block Hermitian Indefinite Linear System
    Wang, Chuanlong
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 309 - 311
  • [35] Pairs of hermitian and skew-hermitian quaternionic matrices: Canonical forms and their applications
    Rodman, Leiba
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (5-6) : 981 - 1019
  • [36] Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts
    Wang, L
    Bai, ZZ
    BIT NUMERICAL MATHEMATICS, 2004, 44 (02) : 363 - 386
  • [37] Two projection methods for Skew-Hermitian operator equations
    Mennouni, Abdelaziz
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 1649 - 1654
  • [38] Parameterized preconditioned Hermitian and skew-Hermitian splitting iteration method for a class of linear matrix equations
    Zhang, Wei-Hong
    Yang, Ai-Li
    Wu, Yu-Jiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (06) : 1357 - 1367
  • [39] Hermitian and skew-Hermitian splitting method on a progressive-iterative approximation for least squares fitting
    Channark, Saknarin
    Kumam, Poom
    Martinez-Moreno, Juan
    Jirakitpuwapat, Wachirapong
    AIMS MATHEMATICS, 2022, 7 (09): : 17570 - 17591
  • [40] Skew-Hermitian Triangular Splitting Iteration Methods for Non-Hermitian Positive Definite Linear Systems of Strong Skew-Hermitian Parts
    Li Wang
    Zhong-Zhi Bai
    BIT Numerical Mathematics, 2004, 44 : 363 - 386