TOPOLOGY AND HOMOCLINIC TRAJECTORIES OF DISCRETE DYNAMICAL SYSTEMS

被引:3
|
作者
Pejsachowicz, Jacobo [1 ]
Skiba, Robert [2 ]
机构
[1] Politecn Torino, Dipartamento Matemat, I-10129 Turin, Italy
[2] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
Discrete dynamical systems; homoclinics; bifurcation; index bundle; fredholm maps; NONAUTONOMOUS BIFURCATION; INDEX;
D O I
10.3934/dcdss.2013.6.1077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that nontrivial homoclinic trajectories of a family of discrete, nonautonomous, asymptotically hyperbolic systems parametrized by a circle bifurcate from a stationary solution if the asymptotic stable bundles E-s (+infinity) and E-s (-infinity) of the linearization at the stationary branch are twisted in different ways.
引用
收藏
页码:1077 / 1094
页数:18
相关论文
共 50 条