TOPOLOGY AND HOMOCLINIC TRAJECTORIES OF DISCRETE DYNAMICAL SYSTEMS

被引:3
|
作者
Pejsachowicz, Jacobo [1 ]
Skiba, Robert [2 ]
机构
[1] Politecn Torino, Dipartamento Matemat, I-10129 Turin, Italy
[2] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
Discrete dynamical systems; homoclinics; bifurcation; index bundle; fredholm maps; NONAUTONOMOUS BIFURCATION; INDEX;
D O I
10.3934/dcdss.2013.6.1077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that nontrivial homoclinic trajectories of a family of discrete, nonautonomous, asymptotically hyperbolic systems parametrized by a circle bifurcate from a stationary solution if the asymptotic stable bundles E-s (+infinity) and E-s (-infinity) of the linearization at the stationary branch are twisted in different ways.
引用
收藏
页码:1077 / 1094
页数:18
相关论文
共 50 条
  • [1] Global bifurcation of homoclinic trajectories of discrete dynamical systems
    Pejsachowicz, Jacobo
    Skiba, Robert
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (06): : 2088 - 2109
  • [2] Learning the Topology and Behavior of Discrete Dynamical Systems
    Qiu, Zirou
    Adiga, Abhijin
    Marathe, Madhav V.
    Ravi, S. S.
    Rosenkrantz, Daniel J.
    Stearns, Richard E.
    Vullikanti, Anil
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 13, 2024, : 14722 - 14730
  • [3] EXISTENCE OF TRANSVERSAL HOMOCLINIC ORBITS IN HIGHER DIMENSIONAL DISCRETE DYNAMICAL SYSTEMS
    Peng, Chen-Chang
    Chen, Kuan-Ju
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (03): : 1181 - 1197
  • [4] Box dimension of trajectories of some discrete dynamical systems
    Elezovic, Neven
    Zupanovic, Vesna
    Zubrinic, Darko
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 244 - 252
  • [5] Homoclinic Trajectories in Discontinuous Systems
    Flaviano Battelli
    Michal Fečkan
    Journal of Dynamics and Differential Equations, 2008, 20 : 337 - 376
  • [6] Homoclinic trajectories in discontinuous systems
    Battelli, Flaviano
    Feckan, Michal
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2008, 20 (02) : 337 - 376
  • [7] Homoclinic points in complex dynamical systems
    Devaney, RL
    GLOBAL ANALYSIS OF DYNAMICAL SYSTEMS: FESTSCHRIFT DEDICATED TO FLORIS TAKENS FOR HIS 60TH BIRTHDAY, 2001, : 329 - 338
  • [8] Stabilization of Unstable Trajectories in Discrete and Continuous Fractional Order Dynamical Systems
    Telksniene, Inga
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [9] HIGHER DIMENSIONAL TOPOLOGY AND GENERALIZED HOPF BIFURCATIONS FOR DISCRETE DYNAMICAL SYSTEMS
    Barge, Hector
    Sanjurjo, Jose M. R.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (06) : 2585 - 2601
  • [10] Homoclinic trajectories of invariant sets of Hamiltonian systems
    Bolotin, Sergey
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1997, 4 (03): : 359 - 389