Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS

被引:397
|
作者
Pall, Szilard [1 ]
Zhmurov, Artem [1 ]
Bauer, Paul [2 ]
Abraham, Mark [2 ]
Lundborg, Magnus [3 ]
Gray, Alan [4 ]
Hess, Berk [2 ]
Lindahl, Erik [2 ,5 ]
机构
[1] KTH Royal Inst Technol, PDC Ctr High Performance Comp, Swedish E Sci Res Ctr, S-10044 Stockholm, Sweden
[2] KTH Royal Inst Technol, Swedish E Sci Res Ctr, Dept Appl Phys, Sci Life Lab, Box 1031, S-17121 Solna, Sweden
[3] ERCO Pharma AB, Stockholm, Sweden
[4] NVIDIA Corp, Reading, Berks, England
[5] Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Box 1031, S-17121 Solna, Sweden
来源
JOURNAL OF CHEMICAL PHYSICS | 2020年 / 153卷 / 13期
基金
欧盟地平线“2020”; 瑞典研究理事会; 欧洲研究理事会;
关键词
NONBONDED INTERACTIONS; GPU NODES; ALGORITHMS; EFFICIENT; AMBER; BANG;
D O I
10.1063/5.0018516
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The introduction of accelerator devices such as graphics processing units (GPUs) has had profound impact on molecular dynamics simulations and has enabled order-of-magnitude performance advances using commodity hardware. To fully reap these benefits, it has been necessary to reformulate some of the most fundamental algorithms, including the Verlet list, pair searching, and cutoffs. Here, we present the heterogeneous parallelization and acceleration design of molecular dynamics implemented in the GROMACS codebase over the last decade. The setup involves a general cluster-based approach to pair lists and non-bonded pair interactions that utilizes both GPU and central processing unit (CPU) single instruction, multiple data acceleration efficiently, including the ability to load-balance tasks between CPUs and GPUs. The algorithm work efficiency is tuned for each type of hardware, and to use accelerators more efficiently, we introduce dual pair lists with rolling pruning updates. Combined with new direct GPU-GPU communication and GPU integration, this enables excellent performance from single GPU simulations through strong scaling across multiple GPUs and efficient multi-node parallelization.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Heterogeneous dynamics of ionic liquids from molecular dynamics simulations
    Habasaki, J.
    Ngai, K. L.
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (19):
  • [22] Scalable Constant pH Molecular Dynamics in GROMACS
    Aho, Noora
    Buslaev, Pavel
    Jansen, Anton
    Bauer, Paul
    Groenhof, Gerrit
    Hess, Berk
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, : 6148 - 6160
  • [23] Acceleration of residue-level coarse-grained molecular dynamics by efficient parallelization
    Jung, Jaewoon
    Tan, Cheng
    Kobayashi, Chigusa
    Ugarte, Diego
    Sugita, Yuji
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 425A - 425A
  • [24] Load Balancing for Molecular Dynamics Simulations on Heterogeneous Architectures
    Seckler, Steffen
    Tchipev, Nikola
    Bungartz, Hans-Joachim
    Neumann, Philipp
    PROCEEDINGS OF 2016 IEEE 23RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC), 2016, : 101 - 110
  • [25] Application of the molecular dynamics simulation GROMACS in food science
    Yu, Dongping
    Li, Haiping
    Liu, Yuzi
    Yang, Xingqun
    Yang, Wei
    Fu, Yiran
    Zuo, Yi-ao
    Huang, Xianya
    FOOD RESEARCH INTERNATIONAL, 2024, 190
  • [26] jS']jSimMacs for GROMACS: A Java']Java Application for Advanced Molecular Dynamics Simulations with Remote Access Capability
    Roopra, Sanjit
    Knapp, Bernhard
    Omasits, Ulrich
    Schreiner, Wolfgang
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (10) : 2412 - 2417
  • [27] Gromaps: A Gromacs-Based Toolset to Analyse Density Maps Derived from Molecular Dynamics Simulations
    Briones, Rodolfo
    Blau, Christian
    Kutzner, Carsten
    de Groot, Bert L.
    Aponte-Santamaria, Camilo
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 142A - 143A
  • [28] On the parallelization of molecular dynamics codes
    Trabado, GP
    Plata, O
    Zapata, EL
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (1-2) : 711 - 715
  • [29] Scaling of the GROMACS 4.6 molecular dynamics code on SuperMUC
    Kutzner, Carsten
    Apostolov, Rossen
    Hess, Berk
    Grubmueller, Helmut
    PARALLEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), 2014, 25 : 722 - 727
  • [30] Flooding in GROMACS:: Accelerated barrier crossings in molecular dynamics
    Lange, Oliver E.
    Schaefer, Lars V.
    Grubmueller, Helmut
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (14) : 1693 - 1702