A room-temperature organic polariton transistor

被引:218
|
作者
Zasedatelev, Anton V. [1 ,2 ]
Baranikov, Anton V. [1 ]
Urbonas, Darius [3 ]
Scafirimuto, Fabio [3 ]
Scherf, Ullrich [4 ,5 ]
Stoferle, Thilo [3 ]
Mahrt, Rainer F. [3 ]
Lagoudakis, Pavlos G. [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol, Moscow, Russia
[2] Univ Southampton, Dept Phys & Astron, Southampton, Hants, England
[3] IBM Res Zurich, Ruschlikon, Switzerland
[4] Berg Univ Wuppertal, Macromol Chem Grp, Wuppertal, Germany
[5] Berg Univ Wuppertal, Inst Polymer Technol, Wuppertal, Germany
基金
俄罗斯科学基金会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
BOSE-EINSTEIN CONDENSATION; STATES;
D O I
10.1038/s41566-019-0392-8
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Active optical elements with ever smaller footprint and lower energy consumption are central to modern photonics. The drive for miniaturization, speed and efficiency, with the concomitant volume reduction of the optically active area, has led to the development of devices that harness strong light-matter interactions. By managing the strength of light-matter coupling to exceed losses, quasiparticles, called exciton-polaritons, are formed that combine the properties of the optical fields with the electronic excitations of the active material. By making use of polaritons in inorganic semiconductor microcavities, all-optical transistor functionality was observed, albeit at cryogenic temperatures(1). Here, we replace inorganic semiconductors with a ladder-type polymer in an optical microcavity and realize room-temperature operation of a polariton transistor through vibron-mediated stimulated polariton relaxation. We demonstrate net gain of similar to 10 dB mu m(-1), sub-picosecond switching time, cascaded amplification and all-optical logic operation at ambient conditions.
引用
收藏
页码:378 / +
页数:7
相关论文
共 50 条
  • [41] Room-Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets
    Su, Rui
    Diederichs, Carole
    Wang, Jun
    Liew, Timothy C. H.
    Zhao, Jiaxin
    Liu, Sheng
    Xu, Weigao
    Chen, Zhanghai
    Xiong, Qihua
    NANO LETTERS, 2017, 17 (06) : 3982 - 3988
  • [42] Exciton-polariton room-temperature Bose-Einstein condensate
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2021, 64 (07) : 743 - 743
  • [43] Room-temperature flexible thin film transistor with high mobility
    Hsu, Hsiao-Hsuan
    Chang, Chun-Yen
    Cheng, Chun-Hu
    CURRENT APPLIED PHYSICS, 2013, 13 (07) : 1459 - 1462
  • [44] Room-temperature terahertz detection based on CVD graphene transistor
    Yang Xin-Xin
    Sun Jian-Dong
    Qin Hua
    Lv Li
    Su Li-Na
    Yan Bo
    Li Xin-Xing
    Zhang Zhi-Peng
    Fang Jing-Yue
    CHINESE PHYSICS B, 2015, 24 (04)
  • [45] Room-temperature terahertz detection based on CVD graphene transistor
    杨昕昕
    孙建东
    秦华
    吕利
    苏丽娜
    闫博
    李欣幸
    张志鹏
    方靖岳
    Chinese Physics B, 2015, 24 (04) : 382 - 386
  • [46] A ROOM-TEMPERATURE MOLECULAR ORGANIC BASED MAGNET
    MANRIQUEZ, JM
    YEE, GT
    MCLEAN, RS
    EPSTEIN, AJ
    MILLER, JS
    SCIENCE, 1991, 252 (5011) : 1415 - 1417
  • [47] Dynamic organic room-temperature phosphorescent systems
    Zhou, Qian
    Yang, Chaolong
    Zhao, Yanli
    CHEM, 2023, 9 (09): : 2446 - 2480
  • [48] Organic Semiconductors for Room-Temperature Spin Valves
    Yang, Xueli
    Guo, Ankang
    Guo, Lidan
    Liu, Yunqi
    Sun, Xiangnan
    Guo, Yunlong
    ACS MATERIALS LETTERS, 2022, 4 (05): : 805 - 814
  • [49] Organic room-temperature phosphorescence materials for bioimaging
    Zhang, Yahui
    Li, Hairong
    Yang, Mengdie
    Dai, Wenbo
    Shi, Jianbing
    Tong, Bin
    Cai, Zhengxu
    Wang, Zhouyu
    Dong, Yuping
    Yu, Xiaoqi
    CHEMICAL COMMUNICATIONS, 2023, 59 (36) : 5329 - 5342
  • [50] Room-temperature phosphorescence from organic aggregates
    Weijun Zhao
    Zikai He
    Ben Zhong Tang
    Nature Reviews Materials, 2020, 5 : 869 - 885