Cluster evolution in steady-state two-phase flow in porous media

被引:31
|
作者
Ramstad, T [1 ]
Hansen, A [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.026306
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report numerical studies of the cluster development of two-phase flow in a steady-state environment of porous media. This is done by including biperiodic boundary conditions in a two-dimensional flow simulator. Initial transients of wetting and nonwetting phases that evolve before steady state has occurred, undergo a crossover where every initial pattern is broken up. For flow dominated by capillary effects with capillary numbers in order of 10(-5), we find that around a critical saturation of nonwetting fluid the nonwetting clusters of size s have a power-law distribution n(s)similar to s(-tau) with the exponent tau=1.92 +/- 0.04 for large clusters. This is a lower value than the result for ordinary percolation. We also present scaling relation and time evolution of the structure and global pressure.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Steady-State Two-Phase Flow in Porous Media: Review of Progress in the Development of the DeProF Theory Bridging Pore to Statistical Thermodynamics Scales
    Valavanides, M. S.
    [J]. OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2012, 67 (05): : 787 - 804
  • [32] Effect of viscous and capillary forces on non-steady state two-phase flow in porous media
    Kadet, VV
    Selyakov, VI
    [J]. DOKLADY AKADEMII NAUK, 1996, 350 (05) : 622 - 626
  • [33] A stochastic analysis of steady state two-phase flow in heterogeneous media
    Chen, MJ
    Zhang, DX
    Keller, AA
    Lu, ZM
    [J]. WATER RESOURCES RESEARCH, 2005, 41 (01) : 1 - 14
  • [34] Simulating temporal evolution of pressure in two-phase flow in porous media
    Aker, E
    Maloy, KJ
    Hansen, A
    [J]. PHYSICAL REVIEW E, 1998, 58 (02): : 2217 - 2226
  • [35] Retention and remobilization of colloids during steady-state and transient two-phase flow
    Zhang, Qiulan
    Hassanizadeh, S. M.
    Karadimitriou, N. K.
    Raoof, A.
    Liu, Bing
    Kleingeld, P. J.
    Imhof, A.
    [J]. WATER RESOURCES RESEARCH, 2013, 49 (12) : 8005 - 8016
  • [36] Application of continuous adjoint method to steady-state two-phase flow simulations
    Hu, Guojun
    Kozlowski, Tomasz
    [J]. ANNALS OF NUCLEAR ENERGY, 2018, 117 : 202 - 212
  • [37] Dynamic fluid configurations in steady-state two-phase flow in Bentheimer sandstone
    Gao, Ying
    Raeini, Ali Q.
    Blunt, Martin J.
    Bijeljic, Branko
    [J]. PHYSICAL REVIEW E, 2021, 103 (01)
  • [38] Modelling of steady-state two-phase bubbly flow through a sudden enlargement
    Attou, A
    Giot, M
    Seynhaeve, JM
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1997, 40 (14) : 3375 - 3385
  • [39] Modelling of steady-state two-phase bubbly flow through a sudden enlargement
    Thermodynamique et Turbomachines, Universite Catholiquid de Louvain, Place du Levant 2, Louvain-le-Neuve 1348, Belgium
    [J]. Int J Heat Mass Transfer, 14 (3375-3385):
  • [40] Two-phase flow in porous media with hysteresis
    Corli, Andrea
    Fan, Haitao
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) : 1156 - 1190