THE SEN1-2 DATASET FOR DEEP LEARNING IN SAR-OPTICAL DATA FUSION

被引:119
|
作者
Schmitt, M. [1 ]
Hughes, L. H. [1 ]
Zhu, X. X. [1 ,2 ]
机构
[1] TUM, Signal Proc Earth Observat, Munich, Germany
[2] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Oberpfaffenhofen, Germany
基金
欧洲研究理事会;
关键词
Synthetic aperture radar (SAR); optical remote sensing; Sentinel-1; Sentinel-2; deep learning; data fusion;
D O I
10.5194/isprs-annals-IV-1-141-2018
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
While deep learning techniques have an increasing impact on many technical fields, gathering sufficient amounts of training data is a challenging problem in remote sensing. In particular, this holds for applications involving data from multiple sensors with heterogeneous characteristics. One example for that is the fusion of synthetic aperture radar (SAR) data and optical imagery. With this paper, we publish the SEN1-2 dataset to foster deep learning research in SAR-optical data fusion. SEN1-2 comprises 282;384 pairs of corresponding image patches, collected from across the globe and throughout all meteorological seasons. Besides a detailed description of the dataset, we show exemplary results for several possible applications, such as SAR image colorization, SAR-optical image matching, and creation of artificial optical images from SAR input data. Since SEN1-2 is the first large open dataset of this kind, we believe it will support further developments in the field of deep learning for remote sensing as well as multi-sensor data fusion.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [1] INVESTIGATING SAR-OPTICAL DEEP LEARNING DATA FUSION TO MAP THE BRAZILIAN CERRADO VEGETATION WITH SENTINEL DATA
    Silva Filho, Paulo
    Persello, Claudio
    Maretto, Raian V.
    Machado, Renato
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1365 - 1368
  • [2] DEEP LEARNING FOR SAR-OPTICAL IMAGE MATCHING
    Hughes, Lloyd Haydn
    Merkle, Nina
    Buergmann, Tatjana
    Auer, Stefan
    Schmitt, Michael
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4877 - 4880
  • [3] FUSION OF SAR-OPTICAL DATA FOR LAND COVER MONITORING
    Gaetano, R.
    Cozzolino, D.
    D'Amiano, L.
    Verdoliva, L.
    Poggi, G.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5470 - 5473
  • [4] Self-Supervised SAR-Optical Data Fusion of Sentinel-1/-2 Images
    Chen, Yuxing
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine
    Adrian, Jarrett
    Sagan, Vasit
    Maimaitijiang, Maitiniyazi
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 : 215 - 235
  • [6] Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion
    Meraner, Andrea
    Ebel, Patrick
    Zhu, Xiao Xiang
    Schmitt, Michael
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 166 : 333 - 346
  • [7] SAR-optical feature matching: A large-scale patch dataset and a deep local descriptor
    Xu, Wangyi
    Yuan, Xinhui
    Hu, Qingwu
    Li, Jiayuan
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [8] Enhancing Crop Classification Accuracy through Synthetic SAR-Optical Data Generation Using Deep Learning
    Mirzaei, Ali
    Bagheri, Hossein
    Khosravi, Iman
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (11)
  • [9] Cloud Removal with SAR-Optical Data Fusion and Graph-Based Feature Aggregation Network
    Chen, Shanjing
    Zhang, Wenjuan
    Li, Zhen
    Wang, Yuxi
    Zhang, Bing
    [J]. REMOTE SENSING, 2022, 14 (14)
  • [10] Cloud Removal With SAR-Optical Data Fusion Using a Unified Spatial-Spectral Residual Network
    Wang, Yuxi
    Zhang, Bing
    Zhang, Wenjuan
    Hong, Danfeng
    Zhao, Bin
    Li, Zhen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 20