INVESTIGATING SAR-OPTICAL DEEP LEARNING DATA FUSION TO MAP THE BRAZILIAN CERRADO VEGETATION WITH SENTINEL DATA

被引:0
|
作者
Silva Filho, Paulo [1 ,2 ]
Persello, Claudio [2 ]
Maretto, Raian V. [2 ]
Machado, Renato [1 ]
机构
[1] Aeronaut Inst Technol, Sao Jose Dos Campos, SP, Brazil
[2] Univ Twente, Fac Geo Informat Sci & Earth Observat, Enschede, Netherlands
关键词
Cerrado; deep learning; SAR-optical data fusion; semantic segmentation; remote sensing;
D O I
10.1109/IGARSS52108.2023.10282190
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Despite its environmental and societal importance, accurately mapping the Brazilian Cerrado's vegetation is still an open challenge. Its diverse but spectrally similar physiognomies are difficult to be identified and mapped by state-of-the-art methods from only medium- to high-resolution optical images. This work investigates the fusion of Synthetic Aperture Radar (SAR) and optical data in convolutional neural network architectures to map the Cerrado according to a 2-level class hierarchy. Additionally, the proposed model is designed to deal with uncertainties that are brought by the difference in resolution between the input images (at 10m) and the reference data (at 30m). We tested four data fusion strategies and showed that the position for the data combination is important for the network to learn better features.
引用
收藏
页码:1365 / 1368
页数:4
相关论文
共 50 条
  • [1] THE SEN1-2 DATASET FOR DEEP LEARNING IN SAR-OPTICAL DATA FUSION
    Schmitt, M.
    Hughes, L. H.
    Zhu, X. X.
    [J]. ISPRS TC I MID-TERM SYMPOSIUM INNOVATIVE SENSING - FROM SENSORS TO METHODS AND APPLICATIONS, 2018, 4-1 : 141 - 146
  • [2] FUSION OF SAR-OPTICAL DATA FOR LAND COVER MONITORING
    Gaetano, R.
    Cozzolino, D.
    D'Amiano, L.
    Verdoliva, L.
    Poggi, G.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5470 - 5473
  • [3] Self-Supervised SAR-Optical Data Fusion of Sentinel-1/-2 Images
    Chen, Yuxing
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion
    Meraner, Andrea
    Ebel, Patrick
    Zhu, Xiao Xiang
    Schmitt, Michael
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 166 : 333 - 346
  • [5] Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine
    Adrian, Jarrett
    Sagan, Vasit
    Maimaitijiang, Maitiniyazi
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 : 215 - 235
  • [6] Mapping the Brazilian savanna's natural vegetation: A SAR-optical uncertainty-aware deep learning approach
    Silva Filho, Paulo
    Persello, Claudio
    Maretto, Raian V.
    Machado, Renato
    [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 218 : 405 - 421
  • [7] DEEP LEARNING FOR SAR-OPTICAL IMAGE MATCHING
    Hughes, Lloyd Haydn
    Merkle, Nina
    Buergmann, Tatjana
    Auer, Stefan
    Schmitt, Michael
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4877 - 4880
  • [8] Enhancing Crop Classification Accuracy through Synthetic SAR-Optical Data Generation Using Deep Learning
    Mirzaei, Ali
    Bagheri, Hossein
    Khosravi, Iman
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (11)
  • [9] CLOUD REMOVAL IN UNPAIRED SENTINEL-2 IMAGERY USING CYCLE-CONSISTENT GAN AND SAR-OPTICAL DATA FUSION
    Ebel, Patrick
    Schmitt, Michael
    Zhu, Xiao Xiang
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2065 - 2068
  • [10] HARMONIZING SAR AND OPTICAL DATA TO MAP SURFACE WATER EXTENT: A DEEP LEARNING APPROACH
    Venkataramani, Karthik
    Marshak, Charles Z.
    Bekaert, David
    Simard, Marc
    Denbina, Michael
    Handwerger, Alexander L.
    Chan, Steven
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3349 - 3352