A Deep Neural Architecture for Sentence-Level Sentiment Classification in Twitter Social Networking

被引:7
|
作者
Huy Nguyen [1 ]
Minh-Le Nguyen [1 ]
机构
[1] Japan Adv Inst Sci & Technol, Nomi, Ishikawa, Japan
来源
关键词
Twitter; Sentiment classification; Deep learning;
D O I
10.1007/978-981-10-8438-6_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel deep learning framework including a lexicon-based approach for sentence-level prediction of sentiment label distribution. We propose to first apply semantic rules and then use a Deep Convolutional Neural Network (DeepCNN) for character-level embeddings in order to increase information for word-level embedding. After that, a Bidirectional Long Short-Term Memory network (Bi-LSTM) produces a sentence-wide feature representation from the word-level embedding. We evaluate our approach on three twitter sentiment classification datasets. Experimental results show that our model can improve the classification accuracy of sentence-level sentiment analysis in Twitter social networking.
引用
收藏
页码:15 / 27
页数:13
相关论文
共 50 条
  • [41] Sentence-level sentiment analysis based on supervised gradual machine learning
    Jing Su
    Qun Chen
    Yanyan Wang
    Lijun Zhang
    Wei Pan
    Zhanhuai Li
    [J]. Scientific Reports, 13
  • [42] Deep neural network architecture for sentiment analysis and emotion identification of Twitter messages
    Stojanovski, Dario
    Strezoski, Gjorgji
    Madjarov, Gjorgji
    Dimitrovski, Ivica
    Chorbev, Ivan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (24) : 32213 - 32242
  • [43] Deep neural network architecture for sentiment analysis and emotion identification of Twitter messages
    Dario Stojanovski
    Gjorgji Strezoski
    Gjorgji Madjarov
    Ivica Dimitrovski
    Ivan Chorbev
    [J]. Multimedia Tools and Applications, 2018, 77 : 32213 - 32242
  • [44] Neural Machine Translation With Sentence-Level Topic Context
    Chen, Kehai
    Wang, Rui
    Utiyama, Masao
    Sumita, Eiichiro
    Zhao, Tiejun
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2019, 27 (12) : 1970 - 1984
  • [45] Lipreading Architecture Based on Multiple Convolutional Neural Networks for Sentence-Level Visual Speech Recognition
    Jeon, Sanghun
    Elsharkawy, Ahmed
    Kim, Mun Sang
    [J]. SENSORS, 2022, 22 (01)
  • [46] Correlations and Fractality in Sentence-Level Sentiment Analysis Based on VADER for Literary Texts
    Hernández-Pérez, Ricardo
    Lara-Martínez, Pablo
    Obregón-Quintana, Bibiana
    Liebovitch, Larry S.
    Guzmán-Vargas, Lev
    [J]. Information (Switzerland), 2024, 15 (11)
  • [47] Sentence-Level Sentiment Analysis Using Feature Vectors from Word Embeddings
    Hayashi, Toshitaka
    Fujita, Hamido
    [J]. NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_18), 2018, 303 : 749 - 758
  • [48] Exploiting Linguistic Features for Effective Sentence-Level Sentiment Analysis in Urdu Language
    Amna Altaf
    Muhammad Waqas Anwar
    Muhammad Hasan Jamal
    Usama Ijaz Bajwa
    [J]. Multimedia Tools and Applications, 2023, 82 : 41813 - 41839
  • [49] Context-aware Learning for Sentence-level Sentiment Analysis with Posterior Regularization
    Yang, Bishan
    Cardie, Claire
    [J]. PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2014, : 325 - 335
  • [50] Exploiting Linguistic Features for Effective Sentence-Level Sentiment Analysis in Urdu Language
    Altaf, Amna
    Anwar, Muhammad Waqas
    Jamal, Muhammad Hasan
    Bajwa, Usama Ijaz
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (27) : 41813 - 41839