On the Farrell-Jones conjecture for algebraic K-theory of spaces: the Farrell-Hsiang method

被引:3
|
作者
Ullmann, Mark [1 ]
Winges, Christoph [2 ]
机构
[1] Free Univ Berlin, Inst Math, Berlin, Germany
[2] Rheinische Friedrich Wilhelms Univ Bonn, Math Inst, Bonn, Germany
关键词
algebraic K-theory of spaces; Farrell-Jones conjecture; poly-Z-groups; ISOMORPHISM CONJECTURES; ASSEMBLY MAPS; CATEGORY; LATTICES;
D O I
10.2140/akt.2019.4.57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Farrell-Jones conjecture for algebraic K-theory of spaces for virtually poly-Z-groups. For this, we transfer the "Farrell-Hsiang method" from the linear case to categories of equivariant, controlled retractive spaces.
引用
收藏
页码:57 / 138
页数:82
相关论文
共 50 条
  • [1] On the Farrell-Jones conjecture for higher algebraic K-theory
    Bartels, A
    Reich, H
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) : 501 - 545
  • [2] THE FARRELL-JONES CONJECTURE IN ALGEBRAIC K - AND L-THEORY
    Lueck, Wolfgang
    ENSEIGNEMENT MATHEMATIQUE, 2008, 54 (1-2): : 144 - 145
  • [3] Relation between the Farrell-Jones conjectures in algebraic and hermitian K-theory
    Battikh, Naoufel
    ANNALES DE L INSTITUT FOURIER, 2007, 57 (01) : 197 - 207
  • [4] The Farrell-Jones Isomorphism Conjecture for finite covolume hyperbolic actions and the algebraic K-theory of Bianchi groups
    Berkove, E
    Farrell, FT
    Juan-Pineda, D
    Pearson, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) : 5689 - 5702
  • [5] The Farrell-Hsiang method revisited
    Bartels, A.
    Lueck, W.
    MATHEMATISCHE ANNALEN, 2012, 354 (01) : 209 - 226
  • [6] Coefficients for the Farrell-Jones Conjecture
    Bartels, Arthur
    Reich, Holger
    ADVANCES IN MATHEMATICS, 2007, 209 (01) : 337 - 362
  • [7] The Farrell-Jones conjecture for graph products
    Gandini, Giovanni
    Rueping, Henrik
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (06): : 3651 - 3660
  • [8] On the Farrell-Jones conjecture for Waldhausen's A-theory
    Enkelmann, Nils-Edvin
    Lueck, Wolfgang
    Pieper, Malte
    Ullmann, Mark
    Winges, Christoph
    GEOMETRY & TOPOLOGY, 2018, 22 (06) : 3321 - 3394
  • [9] On the Farrell-Jones Conjecture and its applications
    Bartels, Arthur
    Lueck, Wolfgang
    Reich, Holger
    JOURNAL OF TOPOLOGY, 2008, 1 (01) : 57 - 86
  • [10] The K-theoretic Farrell-Jones conjecture for hyperbolic groups
    Bartels, Arthur
    Lueck, Wolfgang
    Reich, Holger
    INVENTIONES MATHEMATICAE, 2008, 172 (01) : 29 - 70