Ground-based remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees

被引:29
|
作者
Lopez-Moreno, J., I [1 ]
Alonso-Gonzalez, E. [1 ]
Monserrat, O. [2 ]
Del Rio, L. M. [3 ]
Otero, J. [4 ]
Lapazaran, J. [4 ]
Luzi, G. [2 ]
Dematteis, N. [5 ,6 ]
Serreta, A. [7 ]
Rico, I [1 ,8 ]
Serrano-Canadas, E. [9 ]
Bartolome, M. [1 ]
Moreno, A. [1 ]
Buisan, S. [10 ]
Revuelto, J. [11 ]
机构
[1] CSIC, Inst Pirena Ecol, Avda Montanana 1005, Zaragoza 50059, Spain
[2] CTTC, CERCA, Av CF Gauss 7, E-08860 Castelldefels, Barcelona, Spain
[3] Univ Extremadura, Dept Fis Aplicada, Escuela Politecn, Caceres 10071, Spain
[4] Univ Politecn Madrid, Dept Matemat Aplicada Tecnol Informac & Comunicac, ETSI Telecomunicac, Av Complutense 30, ES-28040 Madrid, Spain
[5] Natl Council Res Italy, Res Inst Hydrogeol Protect, Geohazard Monitoring Grp, Turin, Italy
[6] Univ Pavia, Dept Earth Sci & Environm, Pavia, Italy
[7] Univ Zaragoza, Escuela Politecn Super Huesca, Crta Cuarte S-N, Huesca 22071, Spain
[8] Univ Basque Country, Dept Geog Prehist & Archaeol, Vitoria 01006, Spain
[9] Univ Valladolid, Dept Geog, Valladolid, Spain
[10] Delegac Terr AEMET Spanish State Meteorol Agcy Ar, Paseo Canal 17, Zaragoza 50007, Spain
[11] Meteo France CNRS, CNRM, CEN, UMR 3589, Grenoble, France
关键词
glacier monitoring; ground-penetrating radar; remote sensing; ELECTROMAGNETIC-WAVE SPEED; WATER-CONTENT; ALPINE GLACIER; CLIMATE-CHANGE; LASER SCANNER; MASS-BALANCE; SNOW DEPTH; RADAR; ICE; VELOCITY;
D O I
10.1017/jog.2018.96
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This work combines very detailed measurements from terrestrial laser scanner (TLS), ground-based interferometry radar (GB-SAR) and ground-penetrating radar (GPR) to diagnose current conditions and to analyse the recent evolution of the Monte Perdido Glacier in the Spanish Pyrenees from 2011 to 2017. Thus, this is currently one of the best monitored small glacier (<0.5 km(2)) worldwide. The evolution of the glacier surface was surveyed with a Us evidencing an important decline of 6.1 +/- 0.3 m on average, with ice losses mainly concentrated over 3 years (2012, 2015 and 2017). Ice loss is unevenly distributed throughout the study period, with 10-15 m thinning in some areas while unchanged areas in others. GB-SAR revealed that areas with higher ice losses are those that are currently with no or very low ice motion. In contrast, sectors located beneath the areas with less ice loss are those that still exhibit noticeable ice movement (average 2-4.5 cm d(-1) in summer, and annual movement of 9.98 ma(-1) from ablation stakes data). GPR informed that ice thickness was generally <30 m, though locally 30-50 m. Glacier thinning is still accelerating and will lead to extinction of the glacier over the next 50 years.
引用
收藏
页码:85 / 100
页数:16
相关论文
共 50 条
  • [31] Recent advances in ground-based ultraviolet remote sensing of volcanic SO2 fluxes
    Tamburello, Giancarlo
    McGonigle, Andrew J. S.
    Kantzas, Euripides P.
    Aiuppa, Alessandro
    ANNALS OF GEOPHYSICS, 2011, 54 (02) : 199 - 208
  • [32] Research on Ground-Based Remote-Sensing Inversion Method for Soil Salinity Information Based on Crack Characteristics and Spectral Response
    Liu, Xiaozhen
    Zhang, Zhuopeng
    Lu, Mingxuan
    Wang, Yifan
    Ren, Jianhua
    AGRONOMY-BASEL, 2024, 14 (08):
  • [33] Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning
    Casagli N.
    Frodella W.
    Morelli S.
    Tofani V.
    Ciampalini A.
    Intrieri E.
    Raspini F.
    Rossi G.
    Tanteri L.
    Lu P.
    Geoenvironmental Disasters, 4 (1)
  • [34] Comparison between Two New Ground-Based Remote Sensing Techniques for Rock Mass Characterization
    Fatolahzadeh, Sina
    Sepulveda, Sergio A.
    CANADIAN JOURNAL OF REMOTE SENSING, 2025, 51 (01)
  • [35] Volcanic Processes Monitoring and Hazard Assessment Using Integration of Remote Sensing and Ground-Based Techniques
    Calvari, Sonia
    Bonaccorso, Alessandro
    Cappello, Annalisa
    Giudicepietro, Flora
    Sansosti, Eugenio
    REMOTE SENSING, 2022, 14 (15)
  • [36] Vegetation predicts soil shear strength in Arctic soils: Ground-based and remote sensing techniques
    Wall, Wade A.
    Busby, Ryan
    Bosche, Lauren
    ANNALS OF FOREST RESEARCH, 2024, 67 (01) : 155 - 166
  • [37] INFORMATION-PROCESSING METHOD OF GROUND-BASED ATMOSPHERIC REMOTE-SENSING - THE EFFECTIVE INSTRUMENT FUNCTION-METHOD
    XU, JY
    WANG, YJ
    APPLIED OPTICS, 1995, 34 (24): : 5453 - 5460
  • [38] The Virga-Sniffer - a new tool to identify precipitation evaporation using ground-based remote-sensing observations
    Kalesse-Los, Heike
    Koetsche, Anton
    Foth, Andreas
    Roettenbacher, Johannes
    Vogl, Teresa
    Witthuhn, Jonas
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2023, 16 (06) : 1683 - 1704
  • [39] Observing wind, aerosol particles, cloud and precipitation: Finland's new ground-based remote-sensing network
    Hirsikko, A.
    O'Connor, E. J.
    Komppula, M.
    Korhonen, K.
    Pfuller, A.
    Giannakaki, E.
    Wood, C. R.
    Bauer-Pfundstein, M.
    Poikonen, A.
    Karppinen, T.
    Lonka, H.
    Kurri, M.
    Heinonen, J.
    Moisseev, D.
    Asmi, E.
    Aaltonen, V.
    Nordbo, A.
    Rodriguez, E.
    Lihavainen, H.
    Laaksonen, A.
    Lehtinen, K. E. J.
    Laurila, T.
    Petaja, T.
    Kulmala, M.
    Viisanen, Y.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (05) : 1351 - 1375
  • [40] Complementary Use of Ground-Based Proximal Sensing and Airborne/Spaceborne Remote Sensing Techniques in Precision Agriculture: A Systematic Review
    Alexopoulos, Angelos
    Koutras, Konstantinos
    Ben Ali, Sihem
    Puccio, Stefano
    Carella, Alessandro
    Ottaviano, Roberta
    Kalogeras, Athanasios
    AGRONOMY-BASEL, 2023, 13 (07):