Powers from products of consecutive terms in arithmetic progression

被引:38
|
作者
Bennett, MA [1 ]
Bruin, N
Gyory, K
Hajdu, L
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Debrecen Univ, Number Theory Res Grp, Hungarian Acad Sci, Inst Math, H-4010 Debrecen, Hungary
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/S0024611505015625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:273 / 306
页数:34
相关论文
共 50 条
  • [31] Combinatorial Numbers and Powers of an Arithmetic Progression
    Gauthier, N.
    FIBONACCI QUARTERLY, 2008, 46-47 (04): : 375 - 377
  • [32] Almost perfect powers in arithmetic progression
    Saradha, N
    Shorey, TN
    ACTA ARITHMETICA, 2001, 99 (04) : 363 - 388
  • [33] Seven consecutive primes in arithmetic progression
    Dubner, H
    Nelson, H
    MATHEMATICS OF COMPUTATION, 1997, 66 (220) : 1743 - 1749
  • [34] Ten consecutive primes in arithmetic progression
    Dubner, H
    Forbes, T
    Lygeros, N
    Mizony, M
    Nelson, H
    Zimmermann, P
    MATHEMATICS OF COMPUTATION, 2002, 71 (239) : 1323 - 1328
  • [35] N CONSECUTIVE INTEGERS IN AN ARITHMETIC PROGRESSION
    EVANS, R
    ACTA SCIENTIARUM MATHEMATICARUM, 1972, 33 (3-4): : 295 - 296
  • [36] Perfect powers from products of terms in Lucas sequences
    Bugeaud, Yann
    Luca, Florian
    Mignotte, Maurice
    Siksek, Samir
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 611 : 109 - 129
  • [37] PERFECT POWERS IN PRODUCTS OF INTEGERS FROM A BLOCK OF CONSECUTIVE INTEGERS
    SHOREY, TN
    ACTA ARITHMETICA, 1987, 49 (01) : 71 - 79
  • [38] 93.22 More on sums of powers of an arithmetic progression
    Griffiths, Martin
    MATHEMATICAL GAZETTE, 2009, 93 (527): : 277 - 279
  • [39] PERFECT POWERS THAT ARE SUMS OF SQUARES OF AN ARITHMETIC PROGRESSION
    Kundu, Debanjana
    Patel, Vandita
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (03) : 933 - 949
  • [40] The difference between consecutive primes in an arithmetic progression
    Kumchev, A
    QUARTERLY JOURNAL OF MATHEMATICS, 2002, 53 : 479 - 501