Powers from products of consecutive terms in arithmetic progression

被引:38
|
作者
Bennett, MA [1 ]
Bruin, N
Gyory, K
Hajdu, L
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Debrecen Univ, Number Theory Res Grp, Hungarian Acad Sci, Inst Math, H-4010 Debrecen, Hungary
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/S0024611505015625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:273 / 306
页数:34
相关论文
共 50 条
  • [1] Perfect powers from products of consecutive terms in arithmetic progression
    Gyory, K.
    Hajdu, L.
    Pinter, A.
    COMPOSITIO MATHEMATICA, 2009, 145 (04) : 845 - 864
  • [2] On perfect powers in products with terms from arithmetic progressions
    Saradha, N
    ACTA ARITHMETICA, 1997, 82 (02) : 147 - 172
  • [3] Cubes in products of terms from an arithmetic progression
    Das, Pranabesh
    Laishram, Shanta
    Saradha, N.
    ACTA ARITHMETICA, 2018, 184 (02) : 117 - 126
  • [4] Partitions into kth powers of terms in an arithmetic progression
    Bruce C. Berndt
    Amita Malik
    Alexandru Zaharescu
    Mathematische Zeitschrift, 2018, 290 : 1277 - 1307
  • [5] Partitions into kth powers of terms in an arithmetic progression
    Berndt, Bruce C.
    Malik, Amita
    Zaharescu, Alexandru
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (3-4) : 1277 - 1307
  • [6] Polynomial values of products of terms from an arithmetic progression
    L. Hajdu
    Á. Papp
    Monatshefte für Mathematik, 2020, 193 : 637 - 655
  • [7] Polynomial values of products of terms from an arithmetic progression
    Hajdu, L.
    Papp, A.
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (03): : 637 - 655
  • [8] Cubes in products of terms in arithmetic progression
    Hajdu, Lajos
    Tengely, Szabolcs
    Tijdeman, Robert
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (1-2): : 215 - 232
  • [9] Squares in products with terms in an arithmetic progression
    Saradha, N
    ACTA ARITHMETICA, 1998, 86 (01) : 27 - 43
  • [10] THE LEAST COMMON MULTIPLE OF CONSECUTIVE ARITHMETIC PROGRESSION TERMS
    Hong, Shaofang
    Qian, Guoyou
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 431 - 441