UNIQUENESS OF SASAKI-EINSTEIN METRICS

被引:0
|
作者
Nitta, Yasufumi [1 ]
Sekiya, Ken'ichi [2 ]
机构
[1] Ritsumeikan Univ, Fac Sci & Engn, Dept Math Sci, Kusatsu, Shiga 5258577, Japan
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
Sasaki manifolds; Einstein metrics; transverse Kahler geometry;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we shall prove the uniqueness of Sasaki-Einstein metrics on compact Sasaki manifolds modulo the action of the identity component of the automorphism group for the transverse holomorphic structure. This generalizes the result of Cho. Futaki and Ono [5] for compact tone Sasaki manifolds.
引用
收藏
页码:453 / 468
页数:16
相关论文
共 50 条
  • [21] Trivializing a family of Sasaki-Einstein spaces
    Evslin, Jarah
    Kuperstein, Stanislav
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (06):
  • [22] Sasaki-einstein manifolds and volume minimisation
    Martelli, Dario
    Sparks, James
    Yau, Shing-Tung
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (03) : 611 - 673
  • [23] Laplace operators on Sasaki-Einstein manifolds
    Schmude, Johannes
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (04):
  • [24] Some Examples of Toric Sasaki-Einstein Manifolds
    van Coevering, Craig
    [J]. RIEMANNIAN TOPOLOGY AND GEOMETRIC STRUCTURES ON MANIFOLDS, 2009, 271 : 185 - 232
  • [25] TRANSVERSE KAHLER GEOMETRY OF SASAKI MANIFOLDS AND TORIC SASAKI-EINSTEIN MANIFOLDS
    Futaki, Akito
    Ono, Hajime
    Wang, Guofang
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (03) : 585 - 635
  • [26] Projective geometry of Sasaki-Einstein structures and their compactification
    Gover, A. Rod
    Neusser, Katharina
    Willse, Travis
    [J]. DISSERTATIONES MATHEMATICAE, 2019, (546) : 1 - 64
  • [27] Killing forms and toric Sasaki-Einstein spaces
    Slesar, Vladimir
    Visinescu, Mihai
    Vilcu, Gabriel Eduard
    [J]. XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [28] Hidden symmetries on toric Sasaki-Einstein spaces
    Slesar, V.
    Visinescu, M.
    Vilcu, G. E.
    [J]. EPL, 2015, 110 (03)
  • [29] A New Infinite Class of Sasaki-Einstein Manifolds
    Gauntlett, Jerome P.
    Martelli, Dario
    Sparks, James
    Waldram, Daniel
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 8 (06) : 987 - 1000
  • [30] Emergent Sasaki-Einstein geometry and AdS/CFT
    Berman, Robert J.
    Collins, Tristan C.
    Persson, Daniel
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)