A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation

被引:24
|
作者
Lyu, Chenggang [1 ]
Shu, Hai [1 ]
机构
[1] NYU, Dept Biostat, Sch Global Publ Hlth, New York, NY 10003 USA
基金
美国国家卫生研究院;
关键词
Attention gate; Brain tumor segmentation; Encoder-decoder network; Variational autoencoder;
D O I
10.1007/978-3-030-72084-1_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic MRI brain tumor segmentation is of vital importance for the disease diagnosis, monitoring, and treatment planning. In this paper, we propose a two-stage encoder-decoder based model for brain tumor subregional segmentation. Variational autoencoder regularization is utilized in both stages to prevent the overfitting issue. The second-stage network adopts attention gates and is trained additionally using an expanded dataset formed by the first-stage outputs. On the BraTS 2020 validation dataset, the proposed method achieves the mean Dice score of 0.9041, 0.8350, and 0.7958, and Hausdorff distance (95%) of 4.953, 6.299, 23.608 for the whole tumor, tumor core, and enhancing tumor, respectively. The corresponding results on the BraTS 2020 testing dataset are 0.8729, 0.8357, and 0.8205 for Dice score, and 11.4288, 19.9690, and 15.6711 for Hausdorff distance. The code is publicly available at https://github.com/shu-hai/two-stage-VAE-Attention-gate-BraTS2020.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 50 条
  • [31] Kidney Tumor Segmentation Using Two-Stage Bottleneck Block Architecture
    Turk, Fuat
    Luy, Murat
    Barisci, Necaattin
    Yalcinkaya, Fikret
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (01): : 349 - 363
  • [32] Fast two-stage segmentation model for images with intensity inhomogeneity
    Song, Yangyang
    Peng, Guohua
    [J]. VISUAL COMPUTER, 2020, 36 (06): : 1189 - 1202
  • [33] Fast two-stage segmentation model for images with intensity inhomogeneity
    Yangyang Song
    Guohua Peng
    [J]. The Visual Computer, 2020, 36 : 1189 - 1202
  • [34] Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI
    Pei, Linmin
    Reza, Syed M. S.
    Li, Wei
    Davatzikos, Christos
    Iftekharuddin, Khan M.
    [J]. MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [35] Variational Level Set Method for Two-Stage Image Segmentation Based on Morphological Gradients
    Ren, Zemin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [36] Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation
    Zhang, Jianxin
    Jiang, Zongkang
    Dong, Jing
    Hou, Yaqing
    Liu, Bin
    [J]. IEEE ACCESS, 2020, 8 : 58533 - 58545
  • [37] TSER: A Two-Stage Character Segmentation Network With Two-Stream Attention and Edge Refinement
    Zhang, Jinyingming
    Liu, Jin
    Xu, Xiongwei
    Gong, Peizhu
    Duan, Mingyang
    [J]. IEEE ACCESS, 2020, 8 (205216-205230) : 205216 - 205230
  • [38] Cascade multiscale residual attention CNNs with adaptive ROI for automatic brain tumor segmentation
    Ullah, Zahid
    Usman, Muhammad
    Jeon, Moongu
    Gwak, Jeonghwan
    [J]. INFORMATION SCIENCES, 2022, 608 : 1541 - 1556
  • [39] A Two-Stage Cascade Model of BOLD Responses in Human Visual Cortex
    Kay, Kendrick N.
    Winawer, Jonathan
    Rokem, Ariel
    Mezer, Aviv
    Wandell, Brian A.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (05)
  • [40] A two-stage fuzzy multi-objective framework for segmentation of 3D MRI brain image data
    Kahali, Sayan
    Adhikari, Sudip Kumar
    Sing, Jamuna Kanta
    [J]. APPLIED SOFT COMPUTING, 2017, 60 : 312 - 327