A Two-Stage Cascade Model with Variational Autoencoders and Attention Gates for MRI Brain Tumor Segmentation

被引:24
|
作者
Lyu, Chenggang [1 ]
Shu, Hai [1 ]
机构
[1] NYU, Dept Biostat, Sch Global Publ Hlth, New York, NY 10003 USA
基金
美国国家卫生研究院;
关键词
Attention gate; Brain tumor segmentation; Encoder-decoder network; Variational autoencoder;
D O I
10.1007/978-3-030-72084-1_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic MRI brain tumor segmentation is of vital importance for the disease diagnosis, monitoring, and treatment planning. In this paper, we propose a two-stage encoder-decoder based model for brain tumor subregional segmentation. Variational autoencoder regularization is utilized in both stages to prevent the overfitting issue. The second-stage network adopts attention gates and is trained additionally using an expanded dataset formed by the first-stage outputs. On the BraTS 2020 validation dataset, the proposed method achieves the mean Dice score of 0.9041, 0.8350, and 0.7958, and Hausdorff distance (95%) of 4.953, 6.299, 23.608 for the whole tumor, tumor core, and enhancing tumor, respectively. The corresponding results on the BraTS 2020 testing dataset are 0.8729, 0.8357, and 0.8205 for Dice score, and 11.4288, 19.9690, and 15.6711 for Hausdorff distance. The code is publicly available at https://github.com/shu-hai/two-stage-VAE-Attention-gate-BraTS2020.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 50 条
  • [1] Two-stage Cascaded Network With Deep Supervision And Residual Attention For Brain Tumor Segmentation
    Li, Bingbing
    Chi, Jianning
    Wu, Chengdong
    Yu, Xiaosheng
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1863 - 1868
  • [2] Kidney and Kidney Tumor Segmentation Using a Two-Stage Cascade Framework
    Lin, Chaonan
    Fu, Rongda
    Zheng, Shaohua
    [J]. KIDNEY AND KIDNEY TUMOR SEGMENTATION, KITS 2021, 2022, 13168 : 59 - 70
  • [3] A Two-Stage Coarse-to-Fine Brain Tumor Segmentation Framework
    Chen, Hao
    Qin, Zhi-Guang
    Ding, Yi
    [J]. Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2020, 49 (04): : 590 - 596
  • [4] Anterior Mediastinal Lesion Segmentation Based on Two-Stage 3D ResUNet With Attention Gates and Lung Segmentation
    Huang, Su
    Han, Xiaowei
    Fan, Jingfan
    Chen, Jing
    Du, Lei
    Gao, Wenwen
    Liu, Bing
    Chen, Yue
    Liu, Xiuxiu
    Wang, Yige
    Ai, Danni
    Ma, Guolin
    Yang, Jian
    [J]. FRONTIERS IN ONCOLOGY, 2021, 10
  • [5] MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases
    Li, Ruikun
    Guo, Yujie
    Zhao, Zhongchen
    Chen, Mingming
    Liu, Xiaoqing
    Gong, Guanzhong
    Wang, Lisheng
    [J]. EUROPEAN RADIOLOGY, 2023, 33 (05) : 3521 - 3531
  • [6] MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases
    Ruikun Li
    Yujie Guo
    Zhongchen Zhao
    Mingming Chen
    Xiaoqing Liu
    Guanzhong Gong
    Lisheng Wang
    [J]. European Radiology, 2023, 33 : 3521 - 3531
  • [7] A two-stage U-net approach to brain tumor segmentation from multi-spectral MRI records
    Gyorfi, Agnes
    Kovacs, Levente
    Szilagyi, Laszlo
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2022, 14 (02) : 223 - 247
  • [8] A Two-Stage Generative Model with CycleGAN and Joint Diffusion for MRI-based Brain Tumor Detection
    Wang, Wenxin
    Cui, Zhuo-Xu
    Cheng, Guanxun
    Cao, Chentao
    Xu, Xi
    Liu, Ziwei
    Wang, Haifeng
    Qi, Yulong
    Liang, Dong
    Zhu, Yanjie
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (06) : 3534 - 3544
  • [9] Hybrid two-stage cascade for instance segmentation of overlapping objects
    Yang, Yakun
    Luo, Wenjie
    Tian, Xuedong
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 957 - 967
  • [10] Hybrid two-stage cascade for instance segmentation of overlapping objects
    Yakun Yang
    Wenjie Luo
    Xuedong Tian
    [J]. Pattern Analysis and Applications, 2023, 26 (3) : 957 - 967