Multiple Band Selection for Anomaly Detection in Hyperspectral Imagery

被引:3
|
作者
Wang, Lin [2 ]
Chang, Chein-I [1 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Remote Sensing Signal & Image Proc Lab, Baltimore, MD 21250 USA
[2] Xidian Univ, Sch Phys & Optoelect Engn, Xian, Peoples R China
关键词
Band selection; Dimensionality reduction (DR); Multiple band selection (MBS); Successive multiple band selection (SC-MBS); Sequential multiple band selection (SQ-MBS); Single band BS (SBS);
D O I
10.1109/IGARSS.2016.7730831
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper develops a new approach to band selection (BS), called multiple band selection (MBS), which does not require band prioritization to select bands but rather relies on applications to select bands. Its idea is to first use virtual dimensionality (VD) to determine the number of multiple bands needed to be selected. Then MBS is performed by two major iterative process, sequential multiple band selection (SQ-MBS) and successive multiple band selection (SC-MBS). In order to evaluate the performance of MBS anomaly detection is used its application for demonstration.
引用
收藏
页码:7022 / 7025
页数:4
相关论文
共 50 条
  • [41] Anomaly-background separation and particle swarm optimization based band selection for hyperspectral anomaly detection
    Shang, Xiaodi
    Duan, Yiqi
    Wang, Xiaopeng
    Fu, Baijia
    Sun, Xudong
    [J]. IET IMAGE PROCESSING, 2024, 18 (08) : 2053 - 2063
  • [42] Band selection for hyperspectral target-detection based on a multinormal mixture anomaly detection algorithm
    Kasen, Ingebjorg
    Rodningsby, Anders
    Haavardsholm, Trym Vegard
    Skauli, Torbjorn
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIV, 2008, 6966 : 96606 - 96606
  • [43] A projection pursuit algorithm for anomaly detection in hyperspectral imagery
    Malpica, Jose A.
    Rejas, Juan G.
    Alonso, Maria C.
    [J]. PATTERN RECOGNITION, 2008, 41 (11) : 3313 - 3327
  • [44] Anomaly detection in hyperspectral imagery using Stable Distribution
    Mercan, S.
    Alam, Mohammad S.
    [J]. AUTOMATIC TARGET RECOGNITION XXI, 2011, 8049
  • [45] Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery
    Li, Wei
    Wu, Guodong
    Du, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (05) : 597 - 601
  • [46] Anomaly Detection from Hyperspectral Remote Sensing Imagery
    Guo, Qiandong
    Pu, Ruiliang
    Cheng, Jun
    [J]. GEOSCIENCES, 2016, 6 (04)
  • [47] An Adaptive Kernel Method for Anomaly Detection in Hyperspectral Imagery
    Mei, Feng
    Zhao, Chunhui
    Hu, Hanjun
    Sun, Yan
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 874 - +
  • [48] Kernel Sparse Representation for Anomaly Detection in Hyperspectral Imagery
    Xiong, Jie
    Ling, Qiang
    Lin, Zaiping
    Wu, Jing
    [J]. ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 106 - 110
  • [49] Background Suppression Issues in Anomaly Detection for Hyperspectral Imagery
    Wang, Yulei
    Chen, Shih-Yu
    Liu, Chunhong
    Chang, Chein-, I
    [J]. SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING X, 2014, 9124
  • [50] Locality-Constrained Anomaly Detection for Hyperspectral Imagery
    Liu, Jiabin
    Li, Wei
    Du, Qian
    Liu, Kui
    [J]. INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808