Spinorial representation of submanifolds in metric Lie groups

被引:3
|
作者
Bayard, Pierre [1 ]
Roth, Julien [2 ]
Jimenez, Berenice Zavala [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[2] Univ Paris Est Marne La Vallee, Lab Anal & Math Appl, Champs Sur Marne, France
关键词
Spin geometry; Metric Lie groups; Isometric immersions; Weierstrass representation; LORENTZIAN SURFACES; IMMERSIONS;
D O I
10.1016/j.geomphys.2016.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a spinorial representation of submanifolds of any dimension and codimension into Lie groups equipped with left invariant metrics. As applications, we get a spinorial proof of the Fundamental Theorem for submanifolds into Lie groups, we recover previously known representations of submanifolds in R-n and in the 3-dimensional Lie groups S-3 and E(kappa, tau), and we get a new spinorial representation for surfaces in the 3-dimensional semi-direct products: this achieves the spinorial representations of surfaces in the 3-dimensional homogeneous spaces. We finally indicate how to recover a Weierstrass-type representation for CMC-surfaces in 3-dimensional metric Lie groups recently given by Meeks, Mira, Perez and Ros. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:348 / 374
页数:27
相关论文
共 50 条
  • [21] On representation of lie groups without measure
    Tschebotarow, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1943, 40 : 11 - 13
  • [22] Hofer's metric in compact Lie groups
    Larotonda, Gabriel
    Miglioli, Martin
    GROUPS GEOMETRY AND DYNAMICS, 2023, 17 (03) : 839 - 898
  • [23] Invariant affinor metric structures on Lie groups
    E. S. Kornev
    Siberian Mathematical Journal, 2012, 53 : 87 - 99
  • [24] SPINORIAL DESCRIPTION OF LIE-SUPERALGEBRAS
    HASIEWICZ, Z
    KWASNIEWSKI, AK
    LECTURE NOTES IN PHYSICS, 1984, 201 : 119 - 121
  • [25] On metric Diophantine approximation in matrices and Lie groups
    Aka, Menny
    Breuillard, Emmanuel
    Rosenzweig, Lior
    de Saxce, Nicolas
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (03) : 185 - 189
  • [26] INVARIANT AFFINOR METRIC STRUCTURES ON LIE GROUPS
    Kornev, E. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) : 87 - 99
  • [27] Bridge Simulation and Metric Estimation on Lie Groups
    Jensen, Mathias Hojgaard
    Joshi, Sarang
    Sommer, Stefan
    GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 430 - 438
  • [28] From homogeneous metric spaces to Lie groups
    Cowling, Michael G.
    Kivioja, Ville
    Le Donne, Enrico
    Golo, Sebastiano Nicolussi
    Ottazzi, Alessandro
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [29] Biharmonic homogeneous submanifolds in compact symmetric spaces and compact Lie groups
    Ohno, Shinji
    Sakai, Takashi
    Urakawa, Hajime
    HIROSHIMA MATHEMATICAL JOURNAL, 2019, 49 (01) : 47 - 115
  • [30] ADJOINT ORBITS OF SEMI-SIMPLE LIE GROUPS AND LAGRANGIAN SUBMANIFOLDS
    Gasparim, Elizabeth
    Grama, Lino
    San Martin, Luiz A. B.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (02) : 361 - 385