Spinorial representation of submanifolds in metric Lie groups

被引:3
|
作者
Bayard, Pierre [1 ]
Roth, Julien [2 ]
Jimenez, Berenice Zavala [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
[2] Univ Paris Est Marne La Vallee, Lab Anal & Math Appl, Champs Sur Marne, France
关键词
Spin geometry; Metric Lie groups; Isometric immersions; Weierstrass representation; LORENTZIAN SURFACES; IMMERSIONS;
D O I
10.1016/j.geomphys.2016.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a spinorial representation of submanifolds of any dimension and codimension into Lie groups equipped with left invariant metrics. As applications, we get a spinorial proof of the Fundamental Theorem for submanifolds into Lie groups, we recover previously known representations of submanifolds in R-n and in the 3-dimensional Lie groups S-3 and E(kappa, tau), and we get a new spinorial representation for surfaces in the 3-dimensional semi-direct products: this achieves the spinorial representations of surfaces in the 3-dimensional homogeneous spaces. We finally indicate how to recover a Weierstrass-type representation for CMC-surfaces in 3-dimensional metric Lie groups recently given by Meeks, Mira, Perez and Ros. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:348 / 374
页数:27
相关论文
共 50 条
  • [1] SPINORIAL REPRESENTATION OF SUBMANIFOLDS IN RIEMANNIAN SPACE FORMS
    Bayard, Pierre
    Lawn, Marie-Amelie
    Roth, Julien
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (01) : 51 - 80
  • [2] Spinorial Representation of Submanifolds in a Product of Space Forms
    Basilio, Alicia
    Bayard, Pierre
    Lawn, Marie-Amelie
    Roth, Julien
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (05)
  • [3] Spinorial Representation of Submanifolds in a Product of Space Forms
    Alicia Basilio
    Pierre Bayard
    Marie-Amélie Lawn
    Julien Roth
    Advances in Applied Clifford Algebras, 2023, 33
  • [4] Spinorial Representation of Submanifolds in SLn(C)/SU(n)
    Bayard, Pierre
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2019, 29 (03)
  • [5] Totally geodesic submanifolds in Lie groups
    Jianwei Zhou
    Acta Mathematica Hungarica, 2006, 111 : 29 - 41
  • [6] Totally geodesic submanifolds in Lie groups
    Zhou, JW
    ACTA MATHEMATICA HUNGARICA, 2006, 111 (1-2) : 29 - 41
  • [7] Cyclic metric Lie groups
    P. M. Gadea
    J. C. González-Dávila
    J. A. Oubiña
    Monatshefte für Mathematik, 2015, 176 : 219 - 239
  • [8] Cyclic metric Lie groups
    Gadea, P. M.
    Gonzalez-Davila, J. C.
    Oubina, J. A.
    MONATSHEFTE FUR MATHEMATIK, 2015, 176 (02): : 219 - 239
  • [9] Complete minimal submanifolds of compact Lie groups
    Sigmundur Gudmundsson
    Martin Svensson
    Marina Ville
    Mathematische Zeitschrift, 2016, 282 : 993 - 1005
  • [10] Complete minimal submanifolds of compact Lie groups
    Gudmundsson, Sigmundur
    Svensson, Martin
    Ville, Marina
    MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (3-4) : 993 - 1005