Improving Convolutional Neural Network-Based Webshell Detection Through Reinforcement Learning

被引:4
|
作者
Wu, Yalun [1 ]
Song, Minglu [1 ]
Li, Yike [1 ]
Tian, Yunzhe [1 ]
Tong, Endong [1 ]
Niu, Wenjia [1 ]
Jia, Bowei [1 ]
Huang, Haixiang [1 ]
Li, Qiong [1 ]
Liu, Jiqiang [1 ]
机构
[1] Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Webshell detection; Feature selection; Unexpected behavior feature; Reinforcement learning; Convolutional neural network;
D O I
10.1007/978-3-030-86890-1_21
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Webshell detection is highly important for network security protection. Conventional methods are based on keywords matching, which heavily relies on experiences of domain experts when facing emerging malicious webshells of various kinds. Recently, machine learning, especially supervised learning, is introduced for webshell detection and has proved to be a great success. As one of state-of-the-art work, neural network (NN) is designed to input a large number of features and enable deep learning. Thus, how to properly combine the advantages of automatic feature selection and the advantages of expert knowledge-based way has become a key issue. Considering that special features to indicate unexpected webshell behaviors for a target business system are usually simple but effective, in this work, we propose a novel approach for improving webshell detection based on convolutional neural network (CNN) through reinforcement learning. We utilize the reinforcement learning of asynchronous advantage actor-critic (A3C) for automatic feature selection, aiming to maximize the expected accuracy of the CNN classifier on a validation dataset by sequentially interacting with the feature space. Moreover, considering the sparseness of feature values, we build the CNN classifier with two convolutional layers and a global pooling. Extensive experiments and analysis have been conducted to demonstrate the effectiveness of our proposed method.
引用
收藏
页码:368 / 383
页数:16
相关论文
共 50 条
  • [21] Convolutional neural network-based damage detection method for building structures
    Oh, Byung Kwan
    Glisic, Branko
    Park, Hyo Seon
    SMART STRUCTURES AND SYSTEMS, 2021, 27 (06) : 903 - 916
  • [22] A Convolutional Neural Network-based Approach For Image Analysis and Injection Detection
    Titouna, Chafiq
    Nait-Abdesselam, Farid
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, AVSS 2024, 2024,
  • [23] LDDC-Net: Deep Learning Convolutional Neural Network-based lung disease detection and classification
    Reddy, N. Sudhir
    Khanaa, V
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (01) : 526 - 542
  • [24] Accelerating convolutional neural network-based malware traffic detection through ant-colony clustering
    Huang, He
    Deng, Haojiang
    Sheng, Yiqiang
    Ye, Xiaozhou
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (01) : 409 - 423
  • [25] A convolutional neural network-based learning approach to acute lymphoblastic leukaemia detection with automated feature extraction
    Anwar, Shamama
    Alam, Afrin
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (12) : 3113 - 3121
  • [26] Novel Antenna for Partial Discharge Detection and Classification: A Convolutional Neural Network-Based Deep Learning Approach
    Darwish, Ahmad
    Refaat, Shady S.
    Abu-Rub, Haitham
    Toliyat, Hamid A.
    Kumru, Celal F.
    Mustafa, Farook
    El-Hag, Ayman H.
    Coapes, Graeme
    Kameli, Sayed Mohammad
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2024, 31 (04) : 1711 - 1720
  • [27] Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers
    Bai, Mingliang
    Yang, Xusheng
    Liu, Jinfu
    Liu, Jiao
    Yu, Daren
    APPLIED ENERGY, 2021, 302
  • [28] A recurrence network-based convolutional neural network for fatigue driving detection from EEG
    Gao, Zhong-Ke
    Li, Yan-Li
    Yang, Yu-Xuan
    Ma, Chao
    CHAOS, 2019, 29 (11)
  • [29] HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network Intrusion Detection System
    Khan, Muhammad Ashfaq
    PROCESSES, 2021, 9 (05)
  • [30] Convolutional Neural Network-based Virtual Screening
    Shan, Wenying
    Li, Xuanyi
    Yao, Hequan
    Lin, Kejiang
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (10) : 2033 - 2047