Improving Convolutional Neural Network-Based Webshell Detection Through Reinforcement Learning

被引:4
|
作者
Wu, Yalun [1 ]
Song, Minglu [1 ]
Li, Yike [1 ]
Tian, Yunzhe [1 ]
Tong, Endong [1 ]
Niu, Wenjia [1 ]
Jia, Bowei [1 ]
Huang, Haixiang [1 ]
Li, Qiong [1 ]
Liu, Jiqiang [1 ]
机构
[1] Beijing Jiaotong Univ, Beijing Key Lab Secur & Privacy Intelligent Trans, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Webshell detection; Feature selection; Unexpected behavior feature; Reinforcement learning; Convolutional neural network;
D O I
10.1007/978-3-030-86890-1_21
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Webshell detection is highly important for network security protection. Conventional methods are based on keywords matching, which heavily relies on experiences of domain experts when facing emerging malicious webshells of various kinds. Recently, machine learning, especially supervised learning, is introduced for webshell detection and has proved to be a great success. As one of state-of-the-art work, neural network (NN) is designed to input a large number of features and enable deep learning. Thus, how to properly combine the advantages of automatic feature selection and the advantages of expert knowledge-based way has become a key issue. Considering that special features to indicate unexpected webshell behaviors for a target business system are usually simple but effective, in this work, we propose a novel approach for improving webshell detection based on convolutional neural network (CNN) through reinforcement learning. We utilize the reinforcement learning of asynchronous advantage actor-critic (A3C) for automatic feature selection, aiming to maximize the expected accuracy of the CNN classifier on a validation dataset by sequentially interacting with the feature space. Moreover, considering the sparseness of feature values, we build the CNN classifier with two convolutional layers and a global pooling. Extensive experiments and analysis have been conducted to demonstrate the effectiveness of our proposed method.
引用
收藏
页码:368 / 383
页数:16
相关论文
共 50 条
  • [1] Automatic and Accurate Detection of Webshell Based on Convolutional Neural Network
    Lv, Zhuo-Hang
    Yan, Han-Bing
    Mei, Rui
    CYBER SECURITY, CNCERT 2018, 2019, 970 : 73 - 85
  • [2] Convolutional Neural Network-Based Discriminator for Outlier Detection
    Alharbi, Fahad
    El Hindi, Khalil
    Al Ahmadi, Saad
    Alsalamn, Hussien
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [3] Convolutional neural network-based surgical instrument detection
    Cai, Tongbiao
    Zhao, Zijian
    TECHNOLOGY AND HEALTH CARE, 2020, 28 : S81 - S88
  • [4] Convolutional Neural Network-Based Transfer Learning for Optical Aerial Images Change Detection
    Liu, Junfu
    Chen, Keming
    Xu, Guangluan
    Sun, Xian
    Yan, Menglong
    Diao, Wenhui
    Han, Hongzhe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (01) : 127 - 131
  • [5] Improving the Generalizability of Convolutional Neural Network-Based Segmentation on CMR Images
    Chen, Chen
    Bai, Wenjia
    Davies, Rhodri H.
    Bhuva, Anish N.
    Manisty, Charlotte H.
    Augusto, Joao B.
    Moon, James C.
    Aung, Nay
    Lee, Aaron M.
    Sanghvi, Mihir M.
    Fung, Kenneth
    Paiva, Jose Miguel
    Petersen, Steffen E.
    Lukaschuk, Elena
    Piechnik, Stefan K.
    Neubauer, Stefan
    Rueckert, Daniel
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [6] CNN-Webshell: Malicious Web Shell Detection with Convolutional Neural Network
    Tian, Yifan
    Wang, Jiabao
    Zhou, Zhenji
    Zhou, Shengli
    PROCEEDINGS OF 2017 VI INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2017), 2017, : 75 - 79
  • [7] ForensicNet: Modern convolutional neural network-based image forgery detection network
    Tyagi, Shobhit
    Yadav, Divakar
    JOURNAL OF FORENSIC SCIENCES, 2023, 68 (02) : 461 - 469
  • [8] Investigation of a convolutional neural network-based approach for license plate detection
    Cao, Yong
    JOURNAL OF OPTICS-INDIA, 2024, 53 (01): : 697 - 703
  • [9] A convolutional neural network-based method for workpiece surface defect detection
    Xing, Junjie
    Jia, Minping
    Measurement: Journal of the International Measurement Confederation, 2021, 176
  • [10] A Feature Difference Convolutional Neural Network-Based Change Detection Method
    Zhang, Min
    Shi, Wenzhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10): : 7232 - 7246