Machine learning and big data in psychiatry: toward clinical applications

被引:94
|
作者
Rutledge, Robb B. [1 ,2 ]
Chekroud, Adam M. [3 ,4 ]
Huys, Quentin J. M. [1 ,5 ,6 ]
机构
[1] UCL, Max Planck UCL Ctr Computat Psychiat & Ageing Res, London, England
[2] UCL, Wellcome Ctr Human Neuroimaging, London, England
[3] Yale Univ, Dept Psychiat, New Haven, CT 06520 USA
[4] Spring Hlth, New York, NY USA
[5] UCL, Div Psychiat, London, England
[6] Camden & Islington NHS Fdn Trust, London, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
CRITICAL SLOWING-DOWN; ANTIDEPRESSANT RESPONSE; SYMPTOM DIMENSIONS; PREDICTION ERRORS; DEPRESSION; ASSOCIATION; MODERATORS; DOPAMINE; DISORDER; OUTCOMES;
D O I
10.1016/j.conb.2019.02.006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Psychiatry is a medical field concerned with the treatment of mental illness. Psychiatric disorders broadly relate to higher functions of the brain, and as such are richly intertwined with social, cultural, and experiential factors. This makes them exquisitely complex phenomena that depend on and interact with a large number of variables. Computational psychiatry provides two ways of approaching this complexity. Theory-driven computational approaches employ mechanistic models to make explicit hypotheses at multiple levels of analysis. Data-driven machine-learning approaches can make predictions from high-dimensional data and are generally agnostic as to the underlying mechanisms. Here, we review recent advances in the use of big data and machine-learning approaches toward the aim of alleviating the suffering that arises from psychiatric disorders.
引用
收藏
页码:152 / 159
页数:8
相关论文
共 50 条
  • [21] Machine Learning on Big Data
    Condie, Tyson
    Mineiro, Paul
    Polyzotis, Neoklis
    Weimer, Markus
    [J]. 2013 IEEE 29TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2013, : 1242 - 1244
  • [22] Machine Learning in Big Data
    Wang, Lidong
    Alexander, Cheryl Ann
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2016, 1 (02) : 52 - 61
  • [23] Harnessing Big Data in Amyotrophic Lateral Sclerosis: Machine Learning Applications for Clinical Practice and Pharmaceutical Trials
    Tan, Ee Ling
    Lope, Jasmin
    Bede, Peter
    [J]. JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2024, 23 (03)
  • [24] Improving Machine Learning Tools with Embeddings: Applications to Big Data Security
    Cuzzocrea, Alfredo
    Martinelli, Fabio
    Mercaldo, Francesco
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 5086 - 5092
  • [25] Machine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem?
    Chaudhry, Farhan
    Hunt, Rachel J.
    Hariharan, Prashant
    Anand, Sharath Kumar
    Sanjay, Surya
    Kjoller, Ellen E.
    Bartlett, Connor M.
    Johnson, Kipp W.
    Levy, Phillip D.
    Noushmehr, Houtan
    Lee, Ian Y.
    [J]. FRONTIERS IN NEUROLOGY, 2020, 11
  • [26] In-Memory Computing Architectures for Big Data and Machine Learning Applications
    Snasel, Vaclav
    Tran Khanh Dang
    Pham, Phuong N. H.
    Kueng, Josef
    Kong, Lingping
    [J]. FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 19 - 33
  • [27] Deep learning for small and big data in psychiatry
    Koppe, Georgia
    Meyer-Lindenberg, Andreas
    Durstewitz, Daniel
    [J]. NEUROPSYCHOPHARMACOLOGY, 2021, 46 (01) : 176 - 190
  • [28] Deep learning for small and big data in psychiatry
    Georgia Koppe
    Andreas Meyer-Lindenberg
    Daniel Durstewitz
    [J]. Neuropsychopharmacology, 2021, 46 : 176 - 190
  • [29] Challenges for machine learning in clinical translation of big data imaging studies
    Dinsdale, Nicola K.
    Bluemke, Emma
    Sundaresan, Vaanathi
    Jenkinson, Mark
    Smith, Stephen M.
    Namburete, Ana I. L.
    [J]. NEURON, 2022, 110 (23) : 3866 - 3881
  • [30] Machine learning for big data analytics
    [J]. Oja, E. (erkki.oja@aalto.fi), 1600, Springer Verlag (384):