Machine learning and big data in psychiatry: toward clinical applications

被引:94
|
作者
Rutledge, Robb B. [1 ,2 ]
Chekroud, Adam M. [3 ,4 ]
Huys, Quentin J. M. [1 ,5 ,6 ]
机构
[1] UCL, Max Planck UCL Ctr Computat Psychiat & Ageing Res, London, England
[2] UCL, Wellcome Ctr Human Neuroimaging, London, England
[3] Yale Univ, Dept Psychiat, New Haven, CT 06520 USA
[4] Spring Hlth, New York, NY USA
[5] UCL, Div Psychiat, London, England
[6] Camden & Islington NHS Fdn Trust, London, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
CRITICAL SLOWING-DOWN; ANTIDEPRESSANT RESPONSE; SYMPTOM DIMENSIONS; PREDICTION ERRORS; DEPRESSION; ASSOCIATION; MODERATORS; DOPAMINE; DISORDER; OUTCOMES;
D O I
10.1016/j.conb.2019.02.006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Psychiatry is a medical field concerned with the treatment of mental illness. Psychiatric disorders broadly relate to higher functions of the brain, and as such are richly intertwined with social, cultural, and experiential factors. This makes them exquisitely complex phenomena that depend on and interact with a large number of variables. Computational psychiatry provides two ways of approaching this complexity. Theory-driven computational approaches employ mechanistic models to make explicit hypotheses at multiple levels of analysis. Data-driven machine-learning approaches can make predictions from high-dimensional data and are generally agnostic as to the underlying mechanisms. Here, we review recent advances in the use of big data and machine-learning approaches toward the aim of alleviating the suffering that arises from psychiatric disorders.
引用
收藏
页码:152 / 159
页数:8
相关论文
共 50 条
  • [1] Functional and Process Model on Big Data, Machine Learning, and Digital Phenotyping in Clinical Psychiatry
    Annamalai, Arunkumar
    [J]. INDIAN JOURNAL OF PSYCHOLOGICAL MEDICINE, 2022, 44 (04) : 409 - 415
  • [2] Big Data, AI and Machine Learning for Precision Psychiatry: How are they changing the clinical practice?
    Winter, Nils Ralf
    Hahn, Tim
    [J]. FORTSCHRITTE DER NEUROLOGIE PSYCHIATRIE, 2020, 88 (12) : 786 - 793
  • [3] Advanced Machine Learning Applications in Big Data Analytics
    Li, Taiyong
    Deng, Wu
    Wu, Jiang
    [J]. ELECTRONICS, 2023, 12 (13)
  • [4] Survey of Machine Learning Methods for Big Data Applications
    Vinothini, A.
    Priya, S. Baghavathi
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN DATA SCIENCE (ICCIDS), 2017,
  • [5] Current applications of big data and machine learning in cardiology
    Cuocolo, Renato
    Perillo, Teresa
    De Rosa, Eliana
    Ugga, Lorenzo
    Petretta, Mario
    [J]. JOURNAL OF GERIATRIC CARDIOLOGY, 2019, 16 (08) : 601 - 607
  • [6] Current applications of big data and machine learning in cardiology
    Renato Cuocolo
    Teresa Perillo
    Eliana De Rosa
    Lorenzo Ugga
    Mario Petretta
    [J]. Journal of Geriatric Cardiology, 2019, 16 (08) : 601 - 607
  • [7] Insideout project: Using big data and machine learning for prevention in psychiatry
    Nastro, F. Fiori
    Croce, D.
    Schmidt, S.
    Basili, R.
    Schultze-Lutter, F.
    [J]. EUROPEAN PSYCHIATRY, 2021, 64 : S343 - S343
  • [8] Comparative Evaluation of Machine Learning Strategies for Analyzing Big Data in Psychiatry
    Cao, Han
    Meyer-Lindenberg, Andreas
    Schwarz, Emanuel
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (11)
  • [9] The basics of data, big data, and machine learning in clinical practice
    David Soriano-Valdez
    Ingris Pelaez-Ballestas
    Amaranta Manrique de Lara
    Alfonso Gastelum-Strozzi
    [J]. Clinical Rheumatology, 2021, 40 : 11 - 23
  • [10] The basics of data, big data, and machine learning in clinical practice
    Soriano-Valdez, David
    Pelaez-Ballestas, Ingris
    Manrique de Lara, Amaranta
    Gastelum-Strozzi, Alfonso
    [J]. CLINICAL RHEUMATOLOGY, 2021, 40 (01) : 11 - 23