Quantum algorithmic integrability: The metaphor of classical polygonal billiards

被引:12
|
作者
Mantica, G
机构
[1] Univ Insubria, Int Ctr Study Dynam Syst, I-22100 Como, Italy
[2] Ist Nazl Fis Mat, Unita Milano, Milan, Italy
[3] Ist Nazl Fis Nucl, Sezione Milano, Milan, Italy
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 06期
关键词
D O I
10.1103/PhysRevE.61.6434
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the algorithmic complexity of motions in classical polygonal billiards, which, as the number of sides increases, tend to curved billiards, both regular and chaotic. This study unveils the equivalence of this problem to the procedure of quantization: the average complexity of symbolic trajectories in polygonal billiards features the same scaling relations (with respect to the number of sides) that govern quantum systems when a semiclassical parameter is varied. Two cases, the polygonal approximations of the circle and of the stadium, are examined in detail and are presented as paradigms of quantization of integrable and chaotic systems.
引用
收藏
页码:6434 / 6443
页数:10
相关论文
共 50 条
  • [21] Classical and quantum dynamics in an array of electron billiards
    Brunner, Roland
    Meisels, Ronald
    Kuchar, Friedemar
    Akis, Richard
    Ferry, David K.
    Bird, Jonathan P.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1315 - 1318
  • [22] Classical/quantum integrability in AdS/CFT
    Kazakov, VA
    Marshakov, A
    Minahan, JA
    Zarembo, K
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (05):
  • [23] CLASSICAL AND QUANTUM SYMMETRIES REDUCTION AND INTEGRABILITY
    Marmo, Giuseppe
    Sparano, Giovanni
    Vilasi, Gaetano
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2013, 31 : 105 - 117
  • [24] Quantum transport and classical dynamics in open billiards
    Ishio, H
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (1-2) : 203 - 214
  • [25] Directed transport in classical and quantum chaotic billiards
    Acevedo, W.
    Dittrich, T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (04)
  • [26] Classical integrability and quantum velocity fields
    Hu, B
    Jie, QL
    Ma, JZ
    Gu, JZ
    EUROPHYSICS LETTERS, 2002, 57 (06): : 789 - 795
  • [27] Integrability and chaos in classical and quantum mechanics
    Prigogine, I.
    Petrosky, T.Y.
    Hasegawa, H.H.
    Tasaki, S.
    Chaos, solitons and fractals, 1991, 1 (01): : 3 - 24
  • [29] CLASSICAL LIMITE OF THE QUANTUM-MECHANICS - PROBLEM OF QUANTUM BILLIARDS
    MISHNYOV, OG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1982, 25 (05): : 98 - 100
  • [30] An exactly solvable model for the integrability–chaos transition in rough quantum billiards
    Maxim Olshanii
    Kurt Jacobs
    Marcos Rigol
    Vanja Dunjko
    Harry Kennard
    Vladimir A. Yurovsky
    Nature Communications, 3