A quantitative model of transcription factor-activated gene expression

被引:108
|
作者
Kim, Harold D. [1 ]
O'Shea, Erin K.
机构
[1] Harvard Univ, Howard Hughes Med Inst, Dept Mol & Cellular Biol, Fac Arts, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nsmb.1500
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A challenge facing biology is to develop quantitative, predictive models of gene regulation. Eukaryotic promoters contain transcription factor binding sites of differing affinity and accessibility, but we understand little about how these variables combine to generate a fine-tuned, quantitative transcriptional response. Here we used the PHO5 promoter in budding yeast to quantify the relationship between transcription factor input and gene expression output, termed the gene-regulation function (GRF). A model that captures variable interactions between transcription factors, nucleosomes and the promoter faithfully reproduced the observed quantitative changes in the GRF that occur upon altering the affinity of transcription factor binding sites, and implicates nucleosome-modulated accessibility of transcription factor binding sites in increasing the diversity of gene expression profiles. This work establishes a quantitative framework that can be applied to predict GRFs of other eukaryotic genes.
引用
收藏
页码:1192 / 1198
页数:7
相关论文
共 50 条
  • [41] The influence of NFAT transcription factor on CacyBP/SIP gene expression
    Kadziolka, B.
    Lesniak, W.
    Filipek, A.
    FEBS JOURNAL, 2014, 281 : 692 - 692
  • [42] Isolation of a novel transcription factor regulating GnRH gene expression
    Stafford, DEJ
    Wolfe, AM
    Radovick, S
    PEDIATRIC RESEARCH, 1999, 45 (04) : 98A - 98A
  • [43] IDENTIFICATION OF THE TRANSCRIPTION FACTOR(S) RESPONSIBLE FOR PIMT GENE EXPRESSION
    Furuchi, T.
    Harada, S.
    Ito, K.
    Shimizu, Y.
    Katane, M.
    Sekine, M.
    Ohta, Y.
    Homma, H.
    JOURNAL OF NEUROCHEMISTRY, 2011, 118 : 36 - 36
  • [44] Transcription factor dynamics in gene expression-the long and short of it
    Upadhyaya, Arpita
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 8A - 8A
  • [45] Regulation of OSCAR gene expression by the microphthalmia transcription factor.
    Kim, N
    So, H
    Takami, M
    Rho, J
    Choi, Y
    JOURNAL OF BONE AND MINERAL RESEARCH, 2002, 17 : S451 - S451
  • [46] Controlling for Gene Expression Changes in Transcription Factor Protein Networks
    Banks, Charles A. S.
    Lee, Zachary T.
    Boanca, Gina
    Lakshminarasimhan, Mahadevan
    Groppe, Brad D.
    Wen, Zhihui
    Hattem, Gaye L.
    Seidel, Chris W.
    Florens, Laurence
    Washburn, Michael P.
    MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (06) : 1510 - 1522
  • [47] miRNA–transcription factor interactions: a combinatorial regulation of gene expression
    S. Arora
    R. Rana
    A. Chhabra
    A. Jaiswal
    V. Rani
    Molecular Genetics and Genomics, 2013, 288 : 77 - 87
  • [48] Transcription factor AP-2α gene expression in the lens
    Hollowell, GP
    Fan, JG
    Zelenka, PS
    Chepelinsky, AB
    MOLECULAR BIOLOGY OF THE CELL, 2000, 11 : 15A - 15A
  • [49] Transcription factor NF-κB regulates inducible CD83 gene expression in activated T lymphocytes
    McKinsey, TA
    Chu, ZL
    Tedder, TF
    Ballard, DW
    MOLECULAR IMMUNOLOGY, 2000, 37 (12-13) : 783 - 788
  • [50] Use of tissue factor-activated thromboelastography to evaluate platelet GPIIb/IIIa function
    Khurana, S
    Westley, S
    ONeill, WW
    Timmis, GC
    Safian, RD
    Mattson, JC
    THROMBOSIS AND HAEMOSTASIS, 1997, : P2756 - P2756