INTERNAL TURBINE BLADE COOLING SIMULATION: ADVANCED MODELS ASSESSMENT ON RIBBED CONFIGURATIONS

被引:0
|
作者
Guillou, Florian [1 ]
Chedevergne, Francois [1 ]
机构
[1] Off Natl Etud & Rech Aerosp, Fundamental & Appl Energet Dept, French Aerosp Lab, Aerob Prop Div, F-92322 Chatillon, France
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Many actors of the Gas Turbine (GT) world are today concerned by environmental issues. This is why they are always willing to increase further GT efficiencies. A way to achieve this is rising the turbine entry temperature, providing that the blade turbine is sufficiently cooled to withstand it. This paper investigates a method to use CFD as a design tool, to optimize blades internal coolant channels shapes. It focuses on the use of advanced RANS models combined with a wall law approach to keep CPU costs reasonable. The numerical study relies on experimental data from the MERCI test rig, where a U-shaped coolant duct representative of internal blade turbine channels was tested. The results obtained are encouraging, some need of local mesh refinements have been identified though. The computed heat exchange distributions yield the right trends and well reproduced the effects of rotation, but to go further in the thermal assessment of the models, wall conduction effects will have to be accounted for.
引用
收藏
页码:305 / 314
页数:10
相关论文
共 50 条
  • [31] Numerical simulation and experimental investigation of heat transfer performance of turbine blade with ribbed channel
    Li H.
    Yun X.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2023, 41 (04): : 750 - 756
  • [32] Investigation of Interacting Mechanism between Film Cooling and Internal Cooling Structures of Turbine Blade
    Zhang, Guohua
    Xie, Gongnan
    Bengt, Sunden
    JOURNAL OF THERMAL SCIENCE, 2023, 32 (01) : 330 - 350
  • [33] Study on Cooling Characteristics of an Internal Cooling Structure with a Sloping Sheet for Gas Turbine Blade
    Wang, Xiangyu
    Xiao, Kun
    Feng, Zhenping
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 5A, 2018,
  • [34] Investigation of Interacting Mechanism between Film Cooling and Internal Cooling Structures of Turbine Blade
    ZHANG Guohua
    XIE Gongnan
    BENGT Sundén
    JournalofThermalScience, 2023, 32 (01) : 330 - 350
  • [35] NUMERICAL SIMULATION OF IMPINGING COOLING ON THE LEADING EDGE OF A TURBINE BLADE
    Cheng, Keyong
    Huai, Xiulan
    Cai, Jun
    Guo, Zhixiong
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 10, PTS A AND B, 2012, : 1077 - 1085
  • [36] Numerical simulation of film cooling in leading edge of turbine blade
    College of Power and Energy Engineering, Harbin University of Engineering, Harbin 150001, China
    不详
    不详
    Hangkong Dongli Xuebao, 2009, 3 (519-525): : 519 - 525
  • [37] NUMERICAL SIMULATION OF TURBINE BLADE COOLING VIA JET IMPINGEMENT
    Al Ali, Abdulla R.
    Janajreh, Isam
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 3220 - 3229
  • [38] Thermal test and numerical simulation of cooling stave with internal ribbed tube
    Xun Xu
    Li-jun Wu
    Zhao-kuo Yuan
    Journal of Iron and Steel Research International, 2022, 29 : 1194 - 1204
  • [39] Optimization Design of Lattice Structures in Internal Cooling Channel of Turbine Blade
    Xu, Liang
    Shen, Qingyun
    Ruan, Qicheng
    Xi, Lei
    Gao, Jianmin
    Li, Yunlong
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [40] Application of Scale Adaptive Simulation Model to Studying Cooling Characteristics of a High Pressure Turbine Blade Cutback Trailing Edge With Different Cooling Configurations
    Li, Yue-feng
    Xu, Hua-zhao
    Wang, Jian-hua
    Song, Wei
    Wang, Ming
    Liu, Tai-qiu
    Wang, Xu
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2021, 143 (08):