Convergence of Ginzburg-Landau Functionals in Three-Dimensional Superconductivity

被引:19
|
作者
Baldo, S. [1 ]
Jerrard, R. L. [2 ]
Orlandi, G. [1 ]
Soner, H. M. [3 ]
机构
[1] Univ Verona, Dept Math, I-37100 Verona, Italy
[2] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
[3] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
HODGE THEORY; BOUNDS; MINIMIZERS; ENERGY;
D O I
10.1007/s00205-012-0527-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the asymptotic behavior of the Ginzburg-Landau model for superconductivity in three dimensions, in various energy regimes. Through an analysis via I"-convergence, we rigorously derive a reduced model for the vortex density and deduce a curvature equation for the vortex lines. In the companion paper (Baldo et al. Commun. Math. Phys. 2012, to appear) we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H (c1), and the critical angular velocity of rotating Bose-Einstein condensates.
引用
收藏
页码:699 / 752
页数:54
相关论文
共 50 条
  • [21] On the solutions of the one-dimensional Ginzburg-Landau equations for superconductivity
    Aftalion, A
    Troy, WC
    [J]. PHYSICA D, 1999, 132 (1-2): : 214 - 232
  • [22] Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model
    Chen, ZM
    Elliot, CM
    Qi, T
    [J]. RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (01): : 25 - 50
  • [23] Ginzburg-Landau approach to color superconductivity
    Iida, Kei
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2007, (168): : 414 - 421
  • [24] Ginzburg-Landau approach to color superconductivity
    Iida, K
    Baym, G
    Matsuura, T
    Hatsuda, T
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2004, (153): : 230 - 240
  • [25] ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL
    CHEN, ZM
    HOFFMANN, KH
    LIANG, J
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) : 855 - 875
  • [26] Ginzburg-Landau Approach to Holographic Superconductivity
    Dector A.
    [J]. Journal of High Energy Physics, 2014 (12)
  • [27] On the onset of superconductivity for the Ginzburg-Landau equations
    Bauman, P
    Phillips, D
    Tang, Q
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 277 - 279
  • [28] Dynamics of the Ginzburg-Landau equations of superconductivity
    Fleckinger-Pelle, J
    Kaper, HG
    Takac, P
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (05) : 647 - 665
  • [29] Gauges for the Ginzburg-Landau equations of superconductivity
    FleckingerPelle, J
    Kaper, HG
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 345 - 348
  • [30] Introduction: Superconductivity and the Ginzburg-Landau model
    Rubinstein, J
    Sternberg, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (09)