KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction

被引:341
|
作者
Lin, Gaoxin [1 ,2 ]
Ma, Ruguang [1 ]
Zhou, Yao [1 ]
Liu, Qian [1 ,3 ]
Dong, Xiaoping [2 ]
Wang, Jiacheng [1 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, 1295 Dingxi Rd, Shanghai 200050, Peoples R China
[2] Zhejiang Sci Tech Univ, Sch Sci, Dept Chem, Hangzhou 310018, Zhejiang, Peoples R China
[3] Shanghai Inst Mat Genome, 99 Shangda Rd, Shanghai 200444, Peoples R China
关键词
Biomass; Nitrogen doping; Hierarchical structure; Supercapacitor; Oxygen reduction reaction; NONPRECIOUS METAL-CATALYSTS; ORDERED MESOPOROUS CARBONS; POROUS CARBON; ELECTROCHEMICAL PERFORMANCE; SURFACE-AREA; ACTIVE-SITES; GRAPHENE; ELECTRODES; NANOSHEETS; NANOTUBES;
D O I
10.1016/j.electacta.2017.12.107
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nitrogen-doped porous carbon has aroused extensive interests owing to its unique physical and chemical properties. However, the complicated nitrogen-doping method and high cost limit its practical application. In this work, the nitrogen-rich biomass soybean was used as a single precursor for both carbon and nitrogen source to prepare nitrogen-doped hierarchical micro-mesoporous carbon via templating carbonization coupling with subsequent KOH activation. The influence of KOH dosage on the morphology, structure and electrochemical performance (supercapacitor and oxygen reduction reaction (ORR)) was studied in detail. The optimized ANPC-3, synthesized under the KOH/carbon mass ratio of 3/1, possesses high specific surface area of 1749 m(2) g(-1), developed hierarchical micro-mesoporous structures as well as moderate nitrogen content (1.37 at.%). ANPC-3 exhibits a large energy density of 12.5 Wh kg(-1) at a power density of 450 W kg(-1) with excellent charge-discharge cyclic stability of 96.5% capacitance remaining after 5000 cycles. As an ORR electrocatalyst, it shows improved ORR activity as well as much better stability and methanol-tolerance capacity than commercial Pt/C catalyst. The unique hierarchical micro-mesoporous textures, high surface area and moderate N-doping level make biomass-derived ANPC-3 become an excellent electrode material in various applications. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 57
页数:9
相关论文
共 50 条
  • [31] Biomass Derived Graphene-Like Carbons for Electrocatalytic Oxygen Reduction Reaction
    Huang, Baobing
    Xia, Miao
    Qiu, Jiugen
    Xie, Zailai
    CHEMNANOMAT, 2019, 5 (05): : 682 - 689
  • [32] Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction
    Zhang, Yijie
    Lu, Luhua
    Zhang, Si
    Lv, Zaozao
    Yang, Dantong
    Liu, Jinghai
    Chen, Ying
    Tian, Xiaocong
    Jin, Hongyun
    Song, Weiguo
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) : 5740 - 5745
  • [33] Porous nitrogen-doped carbon derived from biomass for electrocatalytic reduction of CO2 to CO
    Li, Fengwang
    Xue, Mianqi
    Knowles, Gregory P.
    Chen, Lu
    MacFarlane, Douglas R.
    Zhang, Jie
    ELECTROCHIMICA ACTA, 2017, 245 : 561 - 568
  • [34] Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons
    Meng, Xin
    Cui, Huijuan
    Dong, Jianhui
    Zheng, Jianfeng
    Zhu, Yanyan
    Wang, Zhijian
    Zhang, Jian
    Jia, Suping
    Zhao, Jianghong
    Zhu, Zhenping
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (33) : 9469 - 9476
  • [35] Biomass-derived nitrogen and oxygen co-doped hierarchical porous carbon for high performance symmetric supercapacitor
    Zhou, Yibei
    Ren, Juan
    Yang, Yang
    Zheng, Qiaoji
    Liao, Jie
    Xie, Fengyu
    Jie, Wenjing
    Lin, Dunmin
    JOURNAL OF SOLID STATE CHEMISTRY, 2018, 268 : 149 - 158
  • [36] Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes
    Du, Wei
    Wang, Xiaoning
    Sun, Xueqin
    Zhan, Jie
    Zhang, Huadong
    Zhao, Xiangjin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 827 : 213 - 220
  • [37] Nitrogen-Doped Hierarchically Porous Carbons Derived from Polybenzoxazine for Enhanced Supercapacitor Performance
    Wang, Yanhui
    Dong, Liyan
    Lai, Guiping
    Wei, Meng
    Jiang, Xingbi
    Bai, Lizhong
    NANOMATERIALS, 2019, 9 (01)
  • [38] Nitrogen-doped OMCs with high electrocatalytic activity for oxygen reduction reaction
    Jia, Xiaodong
    Meng, Yuhe
    Zhang, Jinqiao
    Song, Yiheng
    INORGANIC CHEMISTRY COMMUNICATIONS, 2019, 107
  • [39] Sulfur- and Nitrogen-Doped, Ferrocene-Derived Mesoporous Carbons with Efficient Electrochemical Reduction of Oxygen
    Xu, Jiaoxing
    Zhao, Yi
    Shen, Cai
    Guan, Lunhui
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (23) : 12594 - 12601
  • [40] Electrocatalytic Oxygen Activation by Carbanion Intermediates of Nitrogen-Doped Graphitic Carbon
    Li, L.-S. (li23@indiana.edu), 1600, American Chemical Society (136):