The transport of low-frequency turbulence in the super-Alfvenic solar wind

被引:24
|
作者
Adhikari, L. [1 ,2 ]
Zank, G. P. [1 ,2 ]
Bruno, R. [3 ]
Telloni, D. [4 ]
Hunana, P. [2 ]
Dosch, A. [2 ]
Marino, R. [5 ]
Hu, Q. [1 ,2 ]
机构
[1] Univ Alabama, Dept Space Sci, Huntsville, AL 35899 USA
[2] Univ Alabama, CSPAR, Huntsville, AL 35899 USA
[3] INAF IAPS Ist Astrofis & Planetol Spaziali, I-00133 Rome, Italy
[4] INAF Astrophys Observ Torino, I-10025 Pino Torinese, Italy
[5] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
关键词
RADIAL EVOLUTION; MAGNETOHYDRODYNAMIC TURBULENCE; DISTANT HELIOSPHERE; MAGNETIC-FIELDS; CROSS HELICITY; MHD TURBULENCE; WAVES; PICKUP; SPECTRUM; POWER;
D O I
10.1088/1742-6596/642/1/012001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Understanding the transport of low-frequency turbulence in an expanding magnetized flow is very important in analyzing numerous problems in space physics and astrophysics. Zank et al 2012 developed six general coupled turbulence transport equations, including the Alfven velocity to describe the transport of low-frequency turbulence for any inhomogeneous flows, including sub-Alfvenic coronal flows, and super-Alfvenic solar wind flows. Here, we solve the 1D steady state six coupled turbulence transport equations of Zank et al. 2012, and the transport equation corresponding to the solar wind temperature in the superAlfvenic solar wind flows from 0.29 to 100 AU without the Alfven velocity. We calculate turbulent quantities corresponding to Voyager 2 data sets for three cases; i) a positive and negative sign of B; ii) the azimuthal angle 0 = tan-1(Bt1 B), and iii) a positive and negative sign of Bt, where B, and Bt are the radial and transverse components of the interplanetary magnetic field, respectively. We compare our theoretical results to the observational results, and find good agreement between them.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Numerical simulation of Alfvenic turbulence in the solar wind
    Goldstein, ML
    Roberts, DA
    Deane, A
    Ghosh, S
    Wong, HK
    [J]. SOLAR WIND NINE, 1999, 471 : 535 - 538
  • [22] Turbulence in the Sub-Alfvenic Solar Wind
    Zank, G. P.
    Zhao, L. -L.
    Adhikari, L.
    Telloni, D.
    Kasper, J. C.
    Stevens, M.
    Rahmati, A.
    Bale, S. D.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2022, 926 (02)
  • [23] Evidence for Super-Alfvenic Oscillations in Solar Type III Radio Burst Sources
    Mohan, Atul
    Mondal, Surajit
    Oberoi, Divya
    Lonsdale, Colin J.
    [J]. ASTROPHYSICAL JOURNAL, 2019, 875 (02):
  • [24] The average magnetic field strength in molecular clouds:: New evidence of super-alfvenic turbulence
    Padoan, P
    Jimenez, R
    Juvela, M
    Nordlund, Å
    [J]. ASTROPHYSICAL JOURNAL, 2004, 604 (01): : L49 - L52
  • [25] LOW-FREQUENCY PLASMA TURBULENCE DURING SOLAR WIND-COMET INTERACTION
    LAKHINA, GS
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 1987, 133 (02) : 203 - 218
  • [26] MASS AND MAGNETIC DISTRIBUTIONS IN SELF-GRAVITATING SUPER-ALFVENIC TURBULENCE WITH ADAPTIVE MESH REFINEMENT
    Collins, David C.
    Padoan, Paolo
    Norman, Michael L.
    Xu, Hao
    [J]. ASTROPHYSICAL JOURNAL, 2011, 731 (01):
  • [27] MODELING RESULTS ON SPATIAL TRANSPORT AND SPECTRAL TRANSFER OF SOLAR-WIND ALFVENIC TURBULENCE
    MARSCH, E
    TU, CY
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1993, 98 (A12) : 21045 - 21059
  • [28] Anisotropy of Alfvenic turbulence in the solar wind and numerical simulations
    Chen, C. H. K.
    Mallet, A.
    Yousef, T. A.
    Schekochihin, A. A.
    Horbury, T. S.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (04) : 3219 - 3226
  • [29] ALFVENIC VERSUS STANDARD TURBULENCE IN THE SOLAR-WIND
    GRAPPIN, R
    VELLI, M
    MANGENEY, A
    [J]. ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1991, 9 (06): : 416 - 426
  • [30] Anisotropy of Imbalanced Alfvenic Turbulence in Fast Solar Wind
    Wicks, R. T.
    Horbury, T. S.
    Chen, C. H. K.
    Schekochihin, A. A.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (04)