GIS Partial Discharge Pattern Recognition Based on Multi-Feature Information Fusion of PRPD Image

被引:10
|
作者
Yin, Kaiyang [1 ]
Wang, Yanhui [1 ]
Liu, Shihai [2 ]
Li, Pengfei [1 ]
Xue, Yaxu [1 ]
Li, Baozeng [1 ]
Dai, Kejie [1 ]
机构
[1] Pingdingshan Univ, Sch Elect & Mech Engn, Pingdingshan 467000, Peoples R China
[2] Shanghai Huace Nav Technol Ltd, Wuhan 430000, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 11期
关键词
partial discharge; pattern recognition; convolution neural network; multi-feature information fusion; D-S evidence theory; FEATURE-EXTRACTION; CLASSIFICATION; LOCALIZATION; NETWORKS;
D O I
10.3390/sym14112464
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Partial discharge (PD) pattern recognition is a critical indicator for evaluating the insulation state of gas-insulated switchgear (GIS). Aiming at the disadvantage of traditional PD pattern recognition methods, such as single feature extraction and low recognition accuracy, a pattern recognition method of PD based on multi-feature information fusion is proposed in this paper. Firstly, a recognition model based on quasi-Hausdorff distance is established according to the statistical characteristics of the phase-resolved partial discharge (PRPD) image, and then a modified convolutional neural network recognition model is established according to the image features of the PRPD image. Finally, Dempster-Shafer (D-S) evidence theory is used to fuse the two pattern recognition results and complement the advantages of the two approaches to improve the accuracy of partial discharge pattern recognition. The experimental results show that the total recognition accuracy rate of this method for four typical PD is more than 94.00%, and the recognition rate is significantly improved compared to support vector machine and normal convolution neural network. Maintaining stability in typical bipedal robots is challenging due to two main reasons.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Phase-Resolved Partial Discharge (PRPD) Pattern Recognition Using Image Processing Template Matching
    Abubakar, Aliyu
    Zachariades, Christos
    SENSORS, 2024, 24 (11)
  • [22] Traffic lights detection and recognition based on multi-feature fusion
    Wang, Wenhao
    Sun, Shanlin
    Jiang, Mingxin
    Yan, Yunyang
    Chen, Xiaobing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (13) : 14829 - 14846
  • [23] Traffic lights detection and recognition based on multi-feature fusion
    Wenhao Wang
    Shanlin Sun
    Mingxin Jiang
    Yunyang Yan
    Xiaobing Chen
    Multimedia Tools and Applications, 2017, 76 : 14829 - 14846
  • [24] Chinese Address Recognition Method Based on Multi-Feature Fusion
    Wang, Yansong
    Wang, Meng
    Ding, Chaoling
    Yang, Xinghua
    Chen, Jian
    IEEE ACCESS, 2022, 10 : 108905 - 108913
  • [25] Scene Recognition Based on Multi-feature Fusion for Indoor Robot
    Liu, Xiaocheng
    Hong, Wei
    Lu, Huiqiu
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 160 - 169
  • [26] MULTI-FEATURE FUSION EMOTION RECOGNITION BASED ON RESTING EEG
    Zhang, Jun-An
    Gu, Liping
    Chen, Yongqiang
    Zhu, Geng
    Ou, Lang
    Wang, Liyan
    Li, Xiaoou
    Zhong, Lichang
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2022, 22 (03)
  • [27] Multi-feature Fusion Action Recognition Based on Key Frames
    Zhao, Yuerong
    Gao, Ling
    He, Dan
    Guo, Hongbo
    Wang, Hai
    Zheng, Jie
    Yang, Xudong
    2019 SEVENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD), 2019, : 279 - 284
  • [28] An Effective Method for Cirrhosis Recognition Based on Multi-Feature Fusion
    Chen, Yameng
    Sun, Gengxin
    Lei, Yiming
    Zhang, Jinpeng
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [29] Underground multi-target recognition of ground penetrating radar based on multi-feature information fusion
    Zou, Hailin
    Liu, Chanjuan
    Zhou, Shusen
    Zang, Mujun
    Metallurgical and Mining Industry, 2015, 7 (07): : 274 - 282
  • [30] Multi-source Partial Discharge Pattern Recognition in GIS Based on Improved SSD
    Wu M.
    Jiang W.
    Luo Y.
    Shen D.
    Yang J.
    Gaodianya Jishu/High Voltage Engineering, 2023, 49 (02): : 812 - 821