Neural Network-based Classification for Engine Load

被引:0
|
作者
Shahid, Syed Maaz [1 ]
Jo, BaekDu [1 ]
Ko, Sunghoon [2 ]
Kwon, Sungoh [1 ]
机构
[1] Univ Ulsan, Sch Elect Engn, Ulsan, South Korea
[2] THyundai Heavy Ind, Ulsan, South Korea
来源
2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019) | 2019年
基金
新加坡国家研究基金会;
关键词
Engine; Cylinder Banks; Load Classification; Artificial Intelligence;
D O I
10.1109/icaiic.2019.8669078
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an engine load classification algorithm using torque data in the crank-angle domain. Engine cylinder operation is different at different engine loads. Engine load information helps to predict the chances or understanding the behavior of a malfunction in engine operation. Hence, we developed an engine load classifier based on signal processing and using an artificial neural network. To that end, we use a magnetic pickup sensor to extract a four-stroke V-type diesel engine's operational information. The pickup sensor's signals are converted to the crank-angle domain (CAD) signal and CAD signals are used in conjunction with the proposed classifier to classify the engine load. For verification, we considered two engine loads (100% and 75%) for a V-type 12-cylinder diesel engine. The proposed algorithm classifies these engine loads with 100% efficiency.
引用
收藏
页码:568 / 571
页数:4
相关论文
共 50 条
  • [21] Implementation of Neural Network-Based Classification Approach on Embedded Platform
    Saric, Rijad
    Jokic, Dejan
    Beganovic, Nejra
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, CMBEBIH 2019, 2020, 73 : 43 - 49
  • [22] Convolutional Neural Network-Based Automatic Classification for Algal Morphogenesis
    Hayashi, Kohma
    Kato, Shoichi
    Matsunaga, Sachihiro
    CYTOLOGIA, 2018, 83 (03) : 300 - 304
  • [23] Comparative Study of Neural Network-based Methods in Classification of ECG
    Wong, Irene Tze Chin
    Wong, Yit Khee
    Chan, Weng Howe
    Kadir, Nurul Ashikin Abdul
    Harun, Fauzan Khairi Che
    2022 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBERNETICS TECHNOLOGY & APPLICATIONS (ICICYTA), 2022, : 17 - 22
  • [24] Convolutional Neural Network-based Keyword Classification for Mixer Control
    Hung, Ying-Hsiu
    Chang, Yen-Ching
    Wang, Suz-Ting
    Lee, Jeng-Dao
    Juang, Wen-Ho
    Sheu, Ming-Hwa
    Lai, Shin-Chi
    2023 20TH INTERNATIONAL SOC DESIGN CONFERENCE, ISOCC, 2023, : 181 - 182
  • [25] Convolutional Neural Network-based Jaywalking Data Generation and Classification
    Park, Jaeseo
    Lee, Yunsoo
    Heo, Jun Ho
    Kang, Suk-Ju
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 132 - 133
  • [26] Neural network-based approaches for biomedical relation classification: A review
    Zhang, Yijia
    Lin, Hongfei
    Yang, Zhihao
    Wang, Jian
    Sun, Yuanyuan
    Xu, Bo
    Zhao, Zhehuan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 99
  • [27] A Novel Neural Network-Based Method for Medical Text Classification
    Li Qing
    Weng Linhong
    Ding Xuehai
    FUTURE INTERNET, 2019, 11 (12):
  • [28] DNNBoT: Deep Neural Network-Based Botnet Detection and Classification
    Haq, Mohd Anul
    Khan, Mohd Abdul Rahim
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 1729 - 1750
  • [29] Neural network-based leaf classification using machine learning
    Palanisamy, Tamilselvi
    Sadayan, Geetha
    Pathinetampadiyan, Nagasankar
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (08):
  • [30] Deep neural network-based classification model for Sentiment Analysis
    Pan, Donghang
    Yuan, Jingling
    Li, Lin
    Sheng, Deming
    2019 6TH INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC AND SOCIO-CULTURAL COMPUTING (BESC 2019), 2019,