Winter wheat grain yield and its components in the North China Plain: irrigation management, cultivation, and climate

被引:7
|
作者
Lv, Lihua [1 ]
Yao, Yanrong [1 ]
Zhang, Lihua [1 ]
Dong, Zhiqiang
Jia, Xiuling [1 ]
Liang, Shuangbo [1 ]
Ji, Junjie
机构
[1] Hebei Acad Agr & Forestry Sci, Inst Cereal & Oil Crops, Shijiazhuang 050035, Hebei, Peoples R China
来源
关键词
Evapotranspiration; grain yield; North China Plain; soil water depletion; Triticum aestivum; WATER-USE EFFICIENCY; ROOT-GROWTH; INDEX;
D O I
10.4067/S0718-58392013000300005
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Irrigation has been identified as the main driving factor of groundwater drawdown in the North China Plain (NCP). In order to develop appropriate irrigation strategies for satisfactory yields of wheat (Triticum aestivum L.), grain yield (GY), yield components, and water use efficiency (WUE) were studied. A field experiment was conducted with two types of winter wheat, 'Shimai15' and 'Shixin733', and five irrigation treatments, including rainfed and four spring irrigation water applications, in four growing seasons (2005 to 2009). Results showed that maximum GY was achieved with three irrigation treatments in the 2005-2006 and 2008-2009 dry seasons and two irrigation treatments in the 2006-2007 normal season. However, in the 2007-2008 wet season, the four irrigation treatments, especially the additional irrigation event at the reviving stage (28), produced maximum GY. Grain yield was significantly related to seasonal full evapotranspiration (ET) and 410 to 530 mm of seasonal full ET, including 143 mm rainfall and 214 mm irrigation water, which led to maximum GY. The two types of cultivars responded differently to irrigation management in different rainfall years. The yield of the water-saving cv. 'Shimai 15' was much higher in the dry seasons than in the other seasons. Variations of yield components were mainly caused by irrigation time and meteorological factors. The higher accumulated temperature during the sowing and tillering stages (24) and irrigation or precipitation at the reviving stage (28) significantly improved tiller growth. The lower average temperature in March and April greatly increased grain number per spike. Sunshine duration played a decisive role in improving grain weight. Our results provide very useful information about irrigation time and frequency of winter wheat in the NCP in order to obtain high yield but reduce the use of underground water.
引用
下载
收藏
页码:233 / 242
页数:10
相关论文
共 50 条
  • [21] Low yield gap of winter wheat in the North China Plain
    Li, Kenan
    Yang, Xiaoguang
    Liu, Zhijuan
    Zhang, Tianyi
    Lu, Shuo
    Liu, Yuan
    EUROPEAN JOURNAL OF AGRONOMY, 2014, 59 : 1 - 12
  • [22] Selecting traits to increase winter wheat yield under climate change in the North China Plain
    Fang, Qin
    Zhang, Xiying
    Chen, Suying
    Shao, Liwei
    Sun, Hongyong
    FIELD CROPS RESEARCH, 2017, 207 : 30 - 41
  • [23] Effects of micro-sprinkling with different irrigation levels on winter wheat grain yield and greenhouse gas emissions in the North China Plain
    Zhen, Zhang
    Zhenwen, Yu
    Yu, Shi
    Yongli, Zhang
    EUROPEAN JOURNAL OF AGRONOMY, 2023, 143
  • [24] Effects of spring limited irrigation on grain yield and root characteristics of winter wheat in groundwater-overexploitation areas in the North China Plain
    Wang, Li
    Liu, Xiaoli
    Liu, Xuejing
    Bao, Xiaoyuan
    Zhang, Xuecheng
    Yin, Baozhong
    Wang, Wentao
    Wang, Yandong
    Zhen, Wenchao
    AGRICULTURAL WATER MANAGEMENT, 2024, 294
  • [25] Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain
    Li, Jinpeng
    Zhang, Zhen
    Liu, Yang
    Yao, Chunsheng
    Song, Wenyue
    Xu, Xuexin
    Zhang, Meng
    Zhou, Xiaonan
    Gao, Yanmei
    Wang, Zhimin
    Sun, Zhencai
    Zhang, Yinghua
    AGRICULTURAL WATER MANAGEMENT, 2019, 224
  • [26] Effects of pre-Sowing Irrigation on Crop Water Consumption, Grain Yield and Water Productivity of Winter Wheat in the North China Plain
    Gao, Yang
    Shen, Xiaojun
    Li, Xinqiang
    Meng, Zhaojiang
    Sun, Jingsheng
    Duan, Aiwang
    IRRIGATION AND DRAINAGE, 2015, 64 (04) : 566 - 574
  • [27] Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain
    Zhao Dandan
    Shen Jiayin
    Lang Kun
    Liu Quanru
    Li Quanqi
    AGRICULTURAL WATER MANAGEMENT, 2013, 118 : 87 - 92
  • [28] Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China Plain
    Jiandong Wang
    Shihong Gong
    Di Xu
    Yingduo Yu
    Yuefen Zhao
    Irrigation Science, 2013, 31 : 1025 - 1037
  • [29] Impact of drip and level-basin irrigation on growth and yield of winter wheat in the North China Plain
    Wang, Jiandong
    Gong, Shihong
    Xu, Di
    Yu, Yingduo
    Zhao, Yuefen
    IRRIGATION SCIENCE, 2013, 31 (05) : 1025 - 1037
  • [30] Optimizing irrigation management sustained grain yield, crop water productivity, and mitigated greenhouse gas emissions from the winter wheat field in North China Plain
    Mehmood, Faisal
    Wang, Guangshuai
    Abubakar, Sunusi Amin
    Zain, Muhammad
    Rahman, Shafeeq Ur
    Gao, Yang
    Duan, Aiwang
    AGRICULTURAL WATER MANAGEMENT, 2023, 290