Mechanism of action-based classification of antibiotics using high-content bacterial image analysis

被引:42
|
作者
Peach, Kelly C. [1 ]
Bray, Walter M. [2 ]
Winslow, Dustin [3 ]
Linington, Peter F. [4 ]
Linington, Roger G. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Univ Calif Santa Cruz, Chem Screening Ctr, Santa Cruz, CA 95064 USA
[3] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA
[4] Univ Kent, Sch Comp, Canterbury CT2 7NF, Kent, England
关键词
ESCHERICHIA-COLI; ANTIBACTERIAL DISCOVERY; PROTEIN-SYNTHESIS; MYOSIN ATPASE; DNA GYRASE; CYCLOPRODIGIOSIN; INHIBITION; NOVOBIOCIN; MORPHOLOGY; CELLS;
D O I
10.1039/c3mb70027e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Image-based screening has become a mature field over the past decade, largely due to the detailed information that can be obtained about compound mode of action by considering the phenotypic effects of test compounds on cellular morphology. However, very few examples exist of extensions of this approach to bacterial targets. We now report the first high-throughput, high-content platform for the prediction of antibiotic modes of action using image-based screening. This approach employs a unique feature segmentation and extraction protocol to quantify key size and shape metrics of bacterial cells over a range of compound concentrations, and matches the trajectories of these metrics to those of training set compounds of known molecular target to predict the test compound's mode of action. This approach has been used to successfully predict the modes of action of a panel of known antibiotics, and has been extended to the evaluation of natural products libraries for the de novo prediction of compound function directly from primary screening data.
引用
收藏
页码:1837 / 1848
页数:12
相关论文
共 50 条
  • [31] High-content screening and mechanism-based evaluation of estrogenic botanical extracts
    Overk, Cassia R.
    Yao, Ping
    Chen, Shaonong
    Deng, Shixing
    Imai, Ayano
    Main, Matthew
    Schinkovitz, Andreas
    Farnsworth, Norman R.
    Pauli, Guido F.
    Bolton, Judy L.
    COMBINATORIAL CHEMISTRY & HIGH THROUGHPUT SCREENING, 2008, 11 (04) : 283 - 293
  • [32] Classification of antimicrobial mechanism of action using dynamic bacterial morphology imaging
    Xudong Ouyang
    Jelmer Hoeksma
    Ronnie J. M. Lubbers
    Tjalling K. Siersma
    Leendert W. Hamoen
    Jeroen den Hertog
    Scientific Reports, 12
  • [33] Classification of antimicrobial mechanism of action using dynamic bacterial morphology imaging
    Ouyang, Xudong
    Hoeksma, Jelmer
    Lubbers, Ronnie J. M.
    Siersma, Tjalling K.
    Hamoen, Leendert W.
    den Hertog, Jeroen
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [34] Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes
    Bray, Mark-Anthony
    Singh, Shantanu
    Han, Han
    Davis, Chadwick T.
    Borgeson, Blake
    Hartland, Cathy
    Kost-Alimova, Maria
    Gustafsdottir, Sigrun M.
    Gibson, Christopher C.
    Carpenter, Anne E.
    NATURE PROTOCOLS, 2016, 11 (09) : 1757 - 1774
  • [35] Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes
    Mathiasen S.
    Christensen S.M.
    Fung J.J.
    Rasmussen S.G.F.
    Fay J.F.
    Jorgensen S.K.
    Veshaguri S.
    Farrens D.L.
    Kiskowski M.
    Kobilka B.
    Stamou D.
    Nature Methods, 2014, 11 (9) : 931 - 934
  • [36] High-Content Screening images streaming analysis using the STriGen methodology
    Melgar-Garcia, Laura
    Gutierrez-Aviles, David
    Rubio-Escudero, Cristina
    Troncoso, Alicia
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 537 - 539
  • [37] Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes
    Mark-Anthony Bray
    Shantanu Singh
    Han Han
    Chadwick T Davis
    Blake Borgeson
    Cathy Hartland
    Maria Kost-Alimova
    Sigrun M Gustafsdottir
    Christopher C Gibson
    Anne E Carpenter
    Nature Protocols, 2016, 11 : 1757 - 1774
  • [38] Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes
    Mathiasen, Signe
    Christensen, Sune M.
    Fung, Juan Jose
    Rasmussen, Soren G. F.
    Fay, Jonathan F.
    Jorgensen, Sune K.
    Veshaguri, Salome
    Farrens, David L.
    Kiskowski, Maria
    Kobilka, Brian
    Stamou, Dimitrios
    NATURE METHODS, 2014, 11 (09) : 931 - 934
  • [39] Maximizing the Value of Your Imaging Data with High-content Image Analysis and Deep Learning
    Cimini, Beth
    Goodman, Allen
    Singh, Shantanu
    Caicedo, Juan
    Carpenter, Anne
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2020, 56 (01) : S17 - S17
  • [40] Automated high-content image-based characterization of microorganism behavioral diversity and distribution
    Lupatelli, Carlotta Aurora
    Attard, Agnes
    Kuhn, Marie-Line
    Cohen, Celine
    Thomen, Philippe
    Noblin, Xavier
    Galiana, Eric
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 5640 - 5649