EXPLICIT STRONG STABILITY PRESERVING MULTISTEP RUNGE-KUTTA METHODS

被引:21
|
作者
Bresten, Christopher [1 ]
Gottlieb, Sigal [1 ]
Grant, Zachary [1 ]
Higgs, Daniel
Ketcheson, David I.
Nemeth, Adrian
机构
[1] Univ Massachusetts, Dept Math, 285 Old Westport Rd, N Dartmouth, MA 02747 USA
关键词
TIME DISCRETIZATION METHODS; GENERAL LINEAR METHODS; INITIAL-VALUE PROBLEMS; LEVEL SET METHOD; CONTRACTIVITY; MONOTONICITY; SCHEME;
D O I
10.1090/mcom/3115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
High-order spatial discretizations of hyperbolic PDEs are often designed to have strong stability properties, such as monotonicity. We study explicit multistep Runge-Kutta strong stability preserving (SSP) time integration methods for use with such discretizations. We prove an upper bound on the SSP coefficient of explicit multistep Runge-Kutta methods of order two and above. Numerical optimization is used to find optimized explicit methods of up to five steps, eight stages, and tenth order. These methods are tested on the linear advection and nonlinear Buckley-Leverett equations, and the results for the observed total variation diminishing and/or positivity preserving time-step are presented.
引用
收藏
页码:747 / 769
页数:23
相关论文
共 50 条
  • [21] Time Step Restrictions for Strong-Stability-Preserving Multistep Runge-Kutta Discontinuous Galerkin Methods
    Yeager, Benjamin
    Kubatko, Ethan
    Wood, Dylan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)
  • [22] On strong stability of explicit Runge-Kutta methods for nonlinear semibounded operators
    Ranocha, Hendrik
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) : 654 - 682
  • [23] STRONG STABILITY PRESERVING TWO-STEP RUNGE-KUTTA METHODS
    Ketcheson, David I.
    Gottlieb, Sigal
    Macdonald, Colin B.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2618 - 2639
  • [24] Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order
    Conde, Sidafa
    Gottlieb, Sigal
    Grant, Zachary J.
    Shadid, John N.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 667 - 690
  • [25] Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods With High Linear Order
    Conde, Sidafa
    Gottlieb, Sigal
    Grant, Zachary J.
    Shahid, John N.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [26] STRONG STABILITY OF EXPLICIT RUNGE-KUTTA TIME DISCRETIZATIONS
    Sun, Zheng
    Sho, Chi-Wang
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1158 - 1182
  • [27] Strong stability for additive Runge-Kutta methods
    Higueras, Inmaculada
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1735 - 1758
  • [28] BOUNDEDNESS AND STRONG STABILITY OF RUNGE-KUTTA METHODS
    Hundsdorfer, W.
    Spijker, M. N.
    [J]. MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 863 - 886
  • [29] A comparative analysis of explicit, IMEX and implicit strong stability preserving Runge-Kutta schemes
    Santos, Ricardo
    Alves, Leonardo
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 159 : 204 - 220
  • [30] Strong Stability Preserving Second Derivative General Linear Methods with Runge-Kutta Stability
    Moradi, Afsaneh
    Abdi, Ali
    Farzi, Javad
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (01)