Three-dimensional numerical simulation of helically propagating combustion waves

被引:4
|
作者
Nagayama, M [1 ]
Ikeda, T
Ishiwata, T
Tamura, N
Ohyanagi, M
机构
[1] Kyoto Univ, Math Sci Res Inst, Sakyo Ku, Kyoto 6068502, Japan
[2] Ryukoku Univ, High Tech Res Ctr, Otsu, Shiga 5202194, Japan
[3] Gifu Univ, Fac Educ, Dept Math, Gifu 5011193, Japan
关键词
self-propagating high-temperature synthesis; traveling waves; pulsating waves; helically propagating combustion waves; finite difference method in the cylindrical coordinate;
D O I
10.1023/A:1013201631587
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present paper, by using a mathematical model for self-propagating high-temperature synthesis, we reveal the three-dimensional structure of so-called spin combustion wave on the inside of cylindrical sample. It is shown that an isothermal surface of regular spin combustion wave has some wings of which number is the same as that of reaction spots on the cylindrical surface and that the isothermal surface with helical wings rotates down with time. Because of this propagating pattern, in this paper, we adopt the more suitable term "helical wave." We also obtain the following existence conditions of a helical wave: If physical parameters are set so that a pulsating wave exists stably for the one-dimensional problem, then a helical wave takes the place of a pulsating wave when the radius of cylindrical sample becomes large.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 50 条
  • [41] The three-dimensional numerical simulation of detached solidification
    Fan, Ju-Yan
    Peng, Lan
    Li, You-Rong
    Tang, Jing-Wen
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (12): : 1990 - 1992
  • [42] Numerical Simulation of Three-Dimensional Upsetting Process
    Zhang, Qian
    Chen, Guimin
    Zhan, Jun
    2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL IV, 2009, : 358 - 360
  • [43] Three-dimensional numerical simulation of the Kalthoff experiment
    Batra, RC
    Ravinsankar, MVS
    INTERNATIONAL JOURNAL OF FRACTURE, 2000, 105 (02) : 161 - 186
  • [44] Three-dimensional numerical simulation of ion nanochannels
    Airoldi, Paolo
    Mauri, Aurelio G.
    Sacco, Riccardo
    Jerome, Joseph W.
    JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2015, 3 (01) : 57 - 65
  • [45] Three-dimensional numerical simulation of ferromagnetic microstructures
    Bernadou, M
    Depeyre, S
    He, S
    Meilland, P
    MECHANICS OF ELECTROMAGNETIC MATERIAL SYSTEMS AND STRUCTURES, 2003, : 17 - 27
  • [46] Numerical Simulation of Three-dimensional Gas Detonation
    Wang, Cheng
    Lu, Jie
    Ye, Ting
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [47] Numerical simulation of three-dimensional fracture interaction
    Mejia Sanchez, Eleazar Cristian
    Rueda Cordero, Julio Alberto
    Roehl, Deane
    COMPUTERS AND GEOTECHNICS, 2020, 122 (122)
  • [48] Three-dimensional numerical simulation of solar cells
    Benaichi, Mohammed
    Hadrami, Mohammed
    Karkri, Aboulkacem
    Chetouani, Abdelaziz
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL AND INFORMATION TECHNOLOGIES (ICEIT), 2016, : 516 - 520
  • [49] Numerical simulation of three-dimensional dendritic growth
    Karma, A
    Rappel, WJ
    PHYSICAL REVIEW LETTERS, 1996, 77 (19) : 4050 - 4053
  • [50] Three-dimensional numerical simulation of the Kalthoff experiment
    R.C. Batra
    M.V.S. Ravinsankar
    International Journal of Fracture, 2000, 105 : 161 - 186