Subspace identification through blind source separation

被引:3
|
作者
Grosse-Wentrup, M [1 ]
Buss, M [1 ]
机构
[1] Tech Univ Munich, Inst Automat Control Engn, D-80290 Munich, Germany
关键词
blind source separation (BSS); consistency; denoising; identifiability; independent component (IQ analysis; independent components; model identification; noise; stability; subspace;
D O I
10.1109/LSP.2005.861581
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given a linear and instantaneous mixture model, we prove that for blind source separation (BSS) algorithms based on mutual information, only sources with non-Gaussian distribution are consistently reconstructed independent of initial conditions. This allows the identification of non-Gaussian sources and consequently the identification of signal and noise subspaces through BSS. The results are illustrated with a simple example, and the implications for a variety of signal processing applications, such as denoising and model identification, are discussed.
引用
收藏
页码:100 / 103
页数:4
相关论文
共 50 条
  • [1] Blind source separation based on subspace
    Xu, SZ
    Ye, ZF
    [J]. INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES 2005, VOLS 1 AND 2, PROCEEDINGS, 2005, : 151 - 154
  • [2] A Blind Identification and Source Separation Method Based on Subspace Intersections for Hyperspectral Astrophysical Data
    Boulais, Axel
    Deville, Yannick
    Berne, Olivier
    [J]. LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017), 2017, 10169 : 367 - 380
  • [3] Underdetermined Blind Source Separation Based on Subspace Representation
    Kim, SangGyun
    Yoo, Chang D.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (07) : 2604 - 2614
  • [4] Fetal electrocardiogram extraction by blind source subspace separation
    De Lathauwer, L
    De Moor, B
    Vandewalle, O
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (05) : 567 - 572
  • [5] Blind source separation and blind equalization algorithms for mechanical signal separation and identification
    Tse, PW
    Zhang, JY
    Wang, XJ
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2006, 12 (04) : 395 - 423
  • [6] Fetal magnetocardiographic signals extracted by 'signal subspace' blind source separation
    Salustri, C
    Barbati, G
    Porcaro, C
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (06) : 1140 - 1142
  • [7] Geometrical Interpretation of the PCA Subspace Approach for Overdetermined Blind Source Separation
    S. Winter
    H. Sawada
    S. Makino
    [J]. EURASIP Journal on Advances in Signal Processing, 2006
  • [8] Subspace-based Bayesian blind source separation for hyperspectral imagery
    Dobigeon, Nicolas
    Moussaoui, Said
    Coulon, Martial
    Tourneret, Jean-Yves
    Hero, Alfred O.
    [J]. 2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2009, : 372 - 375
  • [9] Subspace-based Bayesian blind source separation for hyperspectral imagery
    Dobigeon, Nicolas
    Moussaoui, Sait
    Coulon, Martial
    Tourneret, Jean-Yves
    Hero, Alfred O.
    [J]. 2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2009), 2009, : 372 - +
  • [10] Geometrical understanding of the PCA subspace method for overdetermined blind source separation
    Winter, S
    Sawada, H
    Makino, S
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SPEECH II; INDUSTRY TECHNOLOGY TRACKS; DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS; NEURAL NETWORKS FOR SIGNAL PROCESSING, 2003, : 769 - 772