Considerations for Contractile Electroactive Materials and Actuators

被引:18
|
作者
Rasmussen, Lenore [1 ]
Meixler, Lewis D. [2 ]
Gentile, Charles A. [2 ]
机构
[1] Ras Labs LLC, Intelligent Mat Prosthet & Automat Plasma Surface, Room L-127,100 Stellarator Rd, Princeton, NJ 08545 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08545 USA
关键词
electroactive polymer; EAP; actuator; artificial muscle; contraction; expansion; reverse polarity; plasma treated electrode; shaped electrode; DIFFUSION; TRANSPORT; PPY(DBS); FIELD;
D O I
10.1117/12.914988
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electroactive polymers (EAPs) that bend, swell, ripple (first generation materials), and now contract with low electric input (new development) have been produced. The mechanism of contraction is not well understood. Radionuclide-labeled experiments, molecular modeling, electrolyte experiments, pH experiments, and an ionic concentration experiment were used to determine the chain of events that occur during contraction and, reciprocally, expansion when the polarity is reversed, in these ionic EAPs. Plasma treatment of the electrodes, along with other strategies, allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface, analogous to nerves and tendons moving with muscles during movement. Challenges involved with prototyping actuation using contractile EAPs are also discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Electroactive Polymer Actuators in Dynamic Applications
    Kaal, William
    Herold, Sven
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2011, 16 (01) : 24 - 32
  • [22] Electroactive Polymer Actuators - New Directions
    Sommer-Larsen, Peter
    ACTUATOR 08, CONFERENCE PROCEEDINGS, 2008, : 238 - 243
  • [23] 3-D PRINTING OF DIELECTRIC ELECTROACTIVE POLYMER ACTUATORS AND CHARACTERIZATION OF DIELECTRIC FLEXIBLE MATERIALS
    Gonzalez, David
    Newell, Brittany
    Garcia, Jose
    Noble, Lucas
    Mamer, Trevor
    PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2017, VOL 2, 2018,
  • [24] Electroactive materials
    Besenhard, JO
    Sitte, W
    Stelzer, F
    Gamsjäger, H
    MONATSHEFTE FUR CHEMIE, 2001, 132 (04): : 419 - 420
  • [25] Reducing laser speckle with electroactive polymer actuators
    Graetzel, Chauncey
    Suter, Marcel
    Aschwanden, Manuel
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2015, 2015, 9430
  • [26] Lifetime measurements of ionic electroactive polymer actuators
    Punning, Andres
    Must, Indrek
    Poldsalu, Inga
    Vunder, Veiko
    Temmer, Rauno
    Kruusamaee, Karl
    Kaasik, Friedrich
    Torop, Janno
    Rinne, Pille
    Lulla, Tonis
    Johanson, Urmas
    Tamm, Tarmo
    Aabloo, Alvo
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (18) : 2267 - 2275
  • [27] Electroactive polymer actuators with carbon aerogel electrodes
    Palmre, Viljar
    Lust, Enn
    Jaenes, Alar
    Koel, Mihkel
    Peikolainen, Anna-Liisa
    Torop, Janno
    Johanson, Urmas
    Aabloo, Alvo
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (08) : 2577 - 2583
  • [28] Ion Distribution in Ionic Electroactive Polymer Actuators
    Liu, Yang
    Lu, Caiyan
    Twigg, Stephen
    Lin, Jun-hong
    Hatipoglu, Gokhan
    Liu, Sheng
    Winograd, Nicholas
    Zhang, Q. M.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2011, 2011, 7976
  • [29] The transverse strain response of electroactive polymer actuators
    Yang, G
    Ren, W
    Mukherjee, BK
    Szabo, JP
    2004 14th IEEE International Symposium on Applications of Ferroelectrics-ISAF-04, 2004, : 237 - 240
  • [30] Electroactive Polymer Actuators: From Lab to Market
    Carpi, F.
    Kiil, H. -E.
    Kornbluh, R.
    Sommer-Larsen, P.
    Alici, G.
    ACTUATOR 10, CONFERENCE PROCEEDINGS, 2010, : 405 - +